예제 #1
0
// TarjanSCC returns the strongly connected components of the graph g using Tarjan's algorithm.
//
// A strongly connected component of a graph is a set of vertices where it's possible to reach any
// vertex in the set from any other (meaning there's a cycle between them.)
//
// Generally speaking, a directed graph where the number of strongly connected components is equal
// to the number of nodes is acyclic, unless you count reflexive edges as a cycle (which requires
// only a little extra testing.)
//
func TarjanSCC(g graph.Directed) [][]graph.Node {
	nodes := g.Nodes()
	t := tarjan{
		succ: g.From,

		indexTable: make(map[int]int, len(nodes)),
		lowLink:    make(map[int]int, len(nodes)),
		onStack:    make(internal.IntSet, len(nodes)),
	}
	for _, v := range nodes {
		if t.indexTable[v.ID()] == 0 {
			t.strongconnect(v)
		}
	}
	return t.sccs
}
예제 #2
0
파일: page.go 프로젝트: sbinet/gonum-graph
// PageRankSparse returns the PageRank weights for nodes of the sparse directed
// graph g using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func PageRankSparse(g graph.Directed, damp, tol float64) map[int]float64 {
	// PageRankSparse is implemented according to "How Google Finds Your Needle
	// in the Web's Haystack".
	//
	// G.I^k = alpha.H.I^k + alpha.A.I^k + (1-alpha).1/n.1.I^k
	//
	// http://www.ams.org/samplings/feature-column/fcarc-pagerank

	nodes := g.Nodes()
	indexOf := make(map[int]int, len(nodes))
	for i, n := range nodes {
		indexOf[n.ID()] = i
	}

	m := make(rowCompressedMatrix, len(nodes))
	var dangling compressedRow
	df := damp / float64(len(nodes))
	for j, u := range nodes {
		to := g.From(u)
		f := damp / float64(len(to))
		for _, v := range to {
			m.addTo(indexOf[v.ID()], j, f)
		}
		if len(to) == 0 {
			dangling.addTo(j, df)
		}
	}

	last := make([]float64, len(nodes))
	for i := range last {
		last[i] = 1
	}
	lastV := mat64.NewVector(len(nodes), last)

	vec := make([]float64, len(nodes))
	var sum float64
	for i := range vec {
		r := rand.NormFloat64()
		sum += r
		vec[i] = r
	}
	f := 1 / sum
	for i := range vec {
		vec[i] *= f
	}
	v := mat64.NewVector(len(nodes), vec)

	dt := (1 - damp) / float64(len(nodes))
	for {
		lastV, v = v, lastV

		m.mulVecUnitary(v, lastV)          // First term of the G matrix equation;
		with := dangling.dotUnitary(lastV) // Second term;
		away := onesDotUnitary(dt, lastV)  // Last term.

		floats.AddConst(with+away, v.RawVector().Data)
		if normDiff(vec, last) < tol {
			break
		}
	}

	ranks := make(map[int]float64, len(nodes))
	for i, r := range v.RawVector().Data {
		ranks[nodes[i].ID()] = r
	}

	return ranks
}
예제 #3
0
파일: page.go 프로젝트: sbinet/gonum-graph
// PageRank returns the PageRank weights for nodes of the directed graph g
// using the given damping factor and terminating when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func PageRank(g graph.Directed, damp, tol float64) map[int]float64 {
	// PageRank is implemented according to "How Google Finds Your Needle
	// in the Web's Haystack".
	//
	// G.I^k = alpha.S.I^k + (1-alpha).1/n.1.I^k
	//
	// http://www.ams.org/samplings/feature-column/fcarc-pagerank

	nodes := g.Nodes()
	indexOf := make(map[int]int, len(nodes))
	for i, n := range nodes {
		indexOf[n.ID()] = i
	}

	m := mat64.NewDense(len(nodes), len(nodes), nil)
	dangling := damp / float64(len(nodes))
	for j, u := range nodes {
		to := g.From(u)
		f := damp / float64(len(to))
		for _, v := range to {
			m.Set(indexOf[v.ID()], j, f)
		}
		if len(to) == 0 {
			for i := range nodes {
				m.Set(i, j, dangling)
			}
		}
	}
	mat := m.RawMatrix().Data
	dt := (1 - damp) / float64(len(nodes))
	for i := range mat {
		mat[i] += dt
	}

	last := make([]float64, len(nodes))
	for i := range last {
		last[i] = 1
	}
	lastV := mat64.NewVector(len(nodes), last)

	vec := make([]float64, len(nodes))
	var sum float64
	for i := range vec {
		r := rand.NormFloat64()
		sum += r
		vec[i] = r
	}
	f := 1 / sum
	for i := range vec {
		vec[i] *= f
	}
	v := mat64.NewVector(len(nodes), vec)

	for {
		lastV, v = v, lastV
		v.MulVec(m, lastV)
		if normDiff(vec, last) < tol {
			break
		}
	}

	ranks := make(map[int]float64, len(nodes))
	for i, r := range v.RawVector().Data {
		ranks[nodes[i].ID()] = r
	}

	return ranks
}
예제 #4
0
파일: hits.go 프로젝트: RomainVabre/origin
// HITS returns the Hyperlink-Induced Topic Search hub-authority scores for
// nodes of the directed graph g. HITS terminates when the 2-norm of the
// vector difference between iterations is below tol. The returned map is
// keyed on the graph node IDs.
func HITS(g graph.Directed, tol float64) map[int]HubAuthority {
	nodes := g.Nodes()

	// Make a topological copy of g with dense node IDs.
	indexOf := make(map[int]int, len(nodes))
	for i, n := range nodes {
		indexOf[n.ID()] = i
	}
	nodesLinkingTo := make([][]int, len(nodes))
	nodesLinkedFrom := make([][]int, len(nodes))
	for i, n := range nodes {
		for _, u := range g.To(n) {
			nodesLinkingTo[i] = append(nodesLinkingTo[i], indexOf[u.ID()])
		}
		for _, v := range g.From(n) {
			nodesLinkedFrom[i] = append(nodesLinkedFrom[i], indexOf[v.ID()])
		}
	}
	indexOf = nil

	w := make([]float64, 4*len(nodes))
	auth := w[:len(nodes)]
	hub := w[len(nodes) : 2*len(nodes)]
	for i := range nodes {
		auth[i] = 1
		hub[i] = 1
	}
	deltaAuth := w[2*len(nodes) : 3*len(nodes)]
	deltaHub := w[3*len(nodes):]

	var norm float64
	for {
		norm = 0
		for v := range nodes {
			var a float64
			for _, u := range nodesLinkingTo[v] {
				a += hub[u]
			}
			deltaAuth[v] = auth[v]
			auth[v] = a
			norm += a * a
		}
		norm = math.Sqrt(norm)

		for i := range auth {
			auth[i] /= norm
			deltaAuth[i] -= auth[i]
		}

		norm = 0
		for u := range nodes {
			var h float64
			for _, v := range nodesLinkedFrom[u] {
				h += auth[v]
			}
			deltaHub[u] = hub[u]
			hub[u] = h
			norm += h * h
		}
		norm = math.Sqrt(norm)

		for i := range hub {
			hub[i] /= norm
			deltaHub[i] -= hub[i]
		}

		if floats.Norm(deltaAuth, 2) < tol && floats.Norm(deltaHub, 2) < tol {
			break
		}
	}

	hubAuth := make(map[int]HubAuthority, len(nodes))
	for i, n := range nodes {
		hubAuth[n.ID()] = HubAuthority{Hub: hub[i], Authority: auth[i]}
	}

	return hubAuth
}