func (b *BFGS) InitDirection(loc *Location, dir []float64) (stepSize float64) { dim := len(loc.X) b.dim = dim b.x = resize(b.x, dim) copy(b.x, loc.X) b.grad = resize(b.grad, dim) copy(b.grad, loc.Gradient) b.y = resize(b.y, dim) b.s = resize(b.s, dim) b.tmp = resize(b.tmp, dim) b.yVec = mat64.NewVector(dim, b.y) b.sVec = mat64.NewVector(dim, b.s) b.tmpVec = mat64.NewVector(dim, b.tmp) if b.invHess == nil || cap(b.invHess.RawSymmetric().Data) < dim*dim { b.invHess = mat64.NewSymDense(dim, nil) } else { b.invHess = mat64.NewSymDense(dim, b.invHess.RawSymmetric().Data[:dim*dim]) } // The values of the hessian are initialized in the first call to NextDirection // initial direcion is just negative of gradient because the hessian is 1 copy(dir, loc.Gradient) floats.Scale(-1, dir) b.first = true return 1 / floats.Norm(dir, 2) }
func GradientDescent(X *mat64.Dense, y *mat64.Vector, alpha, tolerance float64, maxIters int) *mat64.Vector { // m = Number of Training Examples // n = Number of Features m, n := X.Dims() h := mat64.NewVector(m, nil) partials := mat64.NewVector(n, nil) new_theta := mat64.NewVector(n, nil) Regression: for i := 0; i < maxIters; i++ { // Calculate partial derivatives h.MulVec(X, new_theta) for el := 0; el < m; el++ { val := (h.At(el, 0) - y.At(el, 0)) / float64(m) h.SetVec(el, val) } partials.MulVec(X.T(), h) // Update theta values for el := 0; el < n; el++ { new_val := new_theta.At(el, 0) - (alpha * partials.At(el, 0)) new_theta.SetVec(el, new_val) } // Check the "distance" to the local minumum dist := math.Sqrt(mat64.Dot(partials, partials)) if dist <= tolerance { break Regression } } return new_theta }
func (bicg *BiCG) Init(ctx *Context) Operation { if bicg.BreakdownTolerance == 0 { bicg.BreakdownTolerance = 1e-6 } bicg.rho = math.NaN() dim := ctx.X.Len() if ctx.P == nil || ctx.P.Len() != dim { ctx.P = mat64.NewVector(dim, nil) } if ctx.Ap == nil || ctx.Ap.Len() != dim { ctx.Ap = mat64.NewVector(dim, nil) } if ctx.Q == nil || ctx.Q.Len() != dim { ctx.Q = mat64.NewVector(dim, nil) } if ctx.Aq == nil || ctx.Aq.Len() != dim { ctx.Aq = mat64.NewVector(dim, nil) } if ctx.Z == nil || ctx.Z.Len() != dim { ctx.Z = mat64.NewVector(dim, nil) } bicg.resume = 2 return SolvePreconditioner // Solve M z = r_{i-1} }
func (lr *LinearRegression) Fit() { h := *mat64.NewVector(lr.m, nil) partials := mat64.NewVector(lr.n, nil) alpha_m := lr.alpha / float64(lr.m) Descent: for i := 0; i < lr.maxIters; i++ { // Calculate partial derivatives h.MulVec(lr.x, lr.Theta) for x := 0; x < lr.m; x++ { h.SetVec(x, h.At(x, 0)-lr.y.At(x, 0)) } partials.MulVec(lr.x.T(), &h) // Update theta values with the precalculated partials for x := 0; x < lr.n; x++ { theta_j := lr.Theta.At(x, 0) - alpha_m*partials.At(x, 0) lr.Theta.SetVec(x, theta_j) } // Check the "distance" to the local minumum dist := math.Sqrt(mat64.Dot(partials, partials)) if dist <= lr.tolerance { break Descent } } }
func TestHypothesis(t *testing.T) { for _, test := range []struct { theta *mat64.Vector x *mat64.Vector y float64 }{ { mat64.NewVector(2, []float64{0, 2}), mat64.NewVector(2, []float64{0, 1}), 2.0, }, { mat64.NewVector(2, []float64{0, 2}), mat64.NewVector(2, []float64{0, 2}), 4.0, }, { mat64.NewVector(2, []float64{0, 2}), mat64.NewVector(2, []float64{0, 10}), 20.0, }, { mat64.NewVector(2, []float64{1, 2}), mat64.NewVector(2, []float64{1, 10}), 21.0, }, { mat64.NewVector(3, []float64{1, 2.5, 5}), mat64.NewVector(3, []float64{10, 20, 0}), 60.0, }, } { h := Hypothesis(test.x, test.theta) if h != test.y { t.Errorf("Hypothesis(%v,%v) is expected to be equal to %v, found %v", test.x, test.theta, test.y, h) } } }
func (b *BFGS) InitDirection(loc *Location, dir []float64) (stepSize float64) { dim := len(loc.X) b.dim = dim b.first = true x := mat64.NewVector(dim, loc.X) grad := mat64.NewVector(dim, loc.Gradient) b.x.CloneVec(x) b.grad.CloneVec(grad) b.y.Reset() b.s.Reset() b.tmp.Reset() if b.invHess == nil || cap(b.invHess.RawSymmetric().Data) < dim*dim { b.invHess = mat64.NewSymDense(dim, nil) } else { b.invHess = mat64.NewSymDense(dim, b.invHess.RawSymmetric().Data[:dim*dim]) } // The values of the inverse Hessian are initialized in the first call to // NextDirection. // Initial direction is just negative of the gradient because the Hessian // is an identity matrix. d := mat64.NewVector(dim, dir) d.ScaleVec(-1, grad) return 1 / mat64.Norm(d, 2) }
// transformNormal performs the same operation as TransformNormal except no // safety checks are performed and both input slices must be non-nil. func (n *Normal) transformNormal(dst, normal []float64) []float64 { srcVec := mat64.NewVector(n.dim, normal) dstVec := mat64.NewVector(n.dim, dst) dstVec.MulVec(&n.lower, srcVec) floats.Add(dst, n.mu) return dst }
// LinearLeastSquares computes the least squares fit for the function // // f(x) = ╬њРѓђtermsРѓђ(x) + ╬њРѓЂtermsРѓЂ(x) + ... // // to the data (xs[i], ys[i]). It returns the parameters ╬њРѓђ, ╬њРѓЂ, ... // that minimize the sum of the squares of the residuals of f: // // РѕЉ (ys[i] - f(xs[i]))┬▓ // // If weights is non-nil, it is used to weight these residuals: // // РѕЉ weights[i] ├Ќ (ys[i] - f(xs[i]))┬▓ // // The function f is specified by one Go function for each linear // term. For efficiency, the Go function is vectorized: it will be // passed a slice of x values in xs and must fill the slice termOut // with the value of the term for each value in xs. func LinearLeastSquares(xs, ys, weights []float64, terms ...func(xs, termOut []float64)) (params []float64) { // The optimal parameters are found by solving for ╬њ╠ѓ in the // "normal equations": // // (ЮљЌрхђЮљќЮљЌ)╬њ╠ѓ = ЮљЌрхђЮљќЮљ▓ // // where Юљќ is a diagonal weight matrix (or the identity matrix // for the unweighted case). // TODO: Consider using orthogonal decomposition. if len(xs) != len(ys) { panic("len(xs) != len(ys)") } if weights != nil && len(xs) != len(weights) { panic("len(xs) != len(weights") } // Construct ЮљЌрхђ. This is the more convenient representation // for efficiently calling the term functions. xTVals := make([]float64, len(terms)*len(xs)) for i, term := range terms { term(xs, xTVals[i*len(xs):i*len(xs)+len(xs)]) } XT := mat64.NewDense(len(terms), len(xs), xTVals) X := XT.T() // Construct ЮљЌрхђЮљќ. var XTW *mat64.Dense if weights == nil { // Юљќ is the identity matrix. XTW = XT } else { // Since Юљќ is a diagonal matrix, we do this directly. XTW = mat64.DenseCopyOf(XT) WDiag := mat64.NewVector(len(weights), weights) for row := 0; row < len(terms); row++ { rowView := XTW.RowView(row) rowView.MulElemVec(rowView, WDiag) } } // Construct Юљ▓. y := mat64.NewVector(len(ys), ys) // Compute ╬њ╠ѓ. lhs := mat64.NewDense(len(terms), len(terms), nil) lhs.Mul(XTW, X) rhs := mat64.NewVector(len(terms), nil) rhs.MulVec(XTW, y) BVals := make([]float64, len(terms)) B := mat64.NewVector(len(terms), BVals) B.SolveVec(lhs, rhs) return BVals }
// Calculates the distance between to vectors func TestVectorDistance(t *testing.T) { vec1 := mat.NewVector(3, []float64{4, 6, 2}) vec2 := mat.NewVector(3, []float64{1, 9, 3}) expectedAns := float64(19) if expectedAns != vectorDistance(vec1, vec2) { t.Errorf("Expected %f, got %f", expectedAns, vectorDistance(vec1, vec2)) } }
func (n *Newton) NextDirection(loc *Location, dir []float64) (stepSize float64) { // This method implements Algorithm 3.3 (Cholesky with Added Multiple of // the Identity) from Nocedal, Wright (2006), 2nd edition. dim := len(loc.X) n.hess.CopySym(loc.Hessian) // Find the smallest diagonal entry of the Hesssian. minA := n.hess.At(0, 0) for i := 1; i < dim; i++ { a := n.hess.At(i, i) if a < minA { minA = a } } // If the smallest diagonal entry is positive, the Hessian may be positive // definite, and so first attempt to apply the Cholesky factorization to // the un-modified Hessian. If the smallest entry is negative, use the // final tau from the last iteration if regularization was needed, // otherwise guess an appropriate value for tau. if minA > 0 { n.tau = 0 } else if n.tau == 0 { n.tau = -minA + 0.001 } for k := 0; k < maxNewtonModifications; k++ { if n.tau != 0 { // Add a multiple of identity to the Hessian. for i := 0; i < dim; i++ { n.hess.SetSym(i, i, loc.Hessian.At(i, i)+n.tau) } } // Try to apply the Cholesky factorization. pd := n.chol.Factorize(n.hess) if pd { d := mat64.NewVector(dim, dir) // Store the solution in d's backing array, dir. d.SolveCholeskyVec(&n.chol, mat64.NewVector(dim, loc.Gradient)) floats.Scale(-1, dir) return 1 } // Modified Hessian is not PD, so increase tau. n.tau = math.Max(n.Increase*n.tau, 0.001) } // Hessian modification failed to get a PD matrix. Return the negative // gradient as the descent direction. copy(dir, loc.Gradient) floats.Scale(-1, dir) return 1 }
func newMargLikeMemory(hyper, outputs int) *margLikeMemory { m := &margLikeMemory{ lastX: make([]float64, hyper), k: mat64.NewSymDense(outputs, nil), chol: &mat64.Cholesky{}, alpha: mat64.NewVector(outputs, nil), tmp: mat64.NewVector(1, nil), dKdTheta: make([]*mat64.SymDense, hyper), kInvDK: mat64.NewDense(outputs, outputs, nil), } for i := 0; i < hyper; i++ { m.dKdTheta[i] = mat64.NewSymDense(outputs, nil) } return m }
func Solve(a sparse.Matrix, b, xInit *mat64.Vector, settings *Settings, method Method) (result Result, err error) { stats := Stats{ StartTime: time.Now(), } dim, c := a.Dims() if dim != c { panic("iterative: matrix is not square") } if xInit != nil && dim != xInit.Len() { panic("iterative: mismatched size of the initial guess") } if b.Len() != dim { panic("iterative: mismatched size of the right-hand side vector") } if xInit == nil { xInit = mat64.NewVector(dim, nil) } if settings == nil { settings = DefaultSettings(dim) } ctx := Context{ X: mat64.NewVector(dim, nil), Residual: mat64.NewVector(dim, nil), } // X = xInit ctx.X.CopyVec(xInit) if mat64.Norm(ctx.X, math.Inf(1)) > 0 { // Residual = Ax sparse.MulMatVec(ctx.Residual, 1, false, a, ctx.X) stats.MatVecMultiplies++ } // Residual = Ax - b ctx.Residual.SubVec(ctx.Residual, b) if mat64.Norm(ctx.Residual, 2) >= settings.Tolerance { err = iterate(method, a, b, settings, &ctx, &stats) } result = Result{ X: ctx.X, Stats: stats, Runtime: time.Since(stats.StartTime), } return result, err }
// findLinearlyIndependnt finds a set of linearly independent columns of A, and // returns the column indexes of the linearly independent columns. func findLinearlyIndependent(A mat64.Matrix) []int { m, n := A.Dims() idxs := make([]int, 0, m) columns := mat64.NewDense(m, m, nil) newCol := make([]float64, m) // Walk in reverse order because slack variables are typically the last columns // of A. for i := n - 1; i >= 0; i-- { if len(idxs) == m { break } mat64.Col(newCol, i, A) if len(idxs) == 0 { // A column is linearly independent from the null set. // This is what needs to be changed if zero columns are allowed, as // a column of all zeros is not linearly independent from itself. columns.SetCol(len(idxs), newCol) idxs = append(idxs, i) continue } if linearlyDependent(mat64.NewVector(m, newCol), columns.View(0, 0, m, len(idxs))) { continue } columns.SetCol(len(idxs), newCol) idxs = append(idxs, i) } return idxs }
func TestGather(t *testing.T) { for i, test := range []struct { y []float64 indices []int want []float64 }{ { y: []float64{1, 2, 3, 4}, indices: []int{0, 2, 3}, want: []float64{1, 3, 4}, }, { indices: []int{0, 2, 3, 6}, y: []float64{1, 2, 3, 4, 5, 6, 7, 8}, want: []float64{1, 3, 4, 7}, }, } { y := mat64.NewVector(len(test.y), test.y) var x Vector Gather(&x, y, test.indices) if x.N != y.Len() { t.Errorf("%d: wrong dimension, want = %v, got = %v ", i, y.Len(), x.N) } if !reflect.DeepEqual(x.Data, test.want) { t.Errorf("%d: data not equal, want = %v, got %v\n", i, test.want, x.Data) } if !reflect.DeepEqual(x.Indices, test.indices) { t.Errorf("%d: indices not equal, want = %v, got %v\n", i, test.indices, x.Indices) } } }
func TestLeastSquares(t *testing.T) { matA := mat64.NewDense(5, 3, []float64{ 1, -2, 4, 1, -1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 4, }) vecb := mat64.NewVector(5, []float64{ 0, 0, 1, 0, 0, }) x := vec3(linalg.LeastSquares(matA, vecb)) expected := Vec3{34.0 / 70.0, 0.0, -10.0 / 70.0} if x != expected { t.Errorf("expected %v, got %v", expected, x) } }
func TestScatter(t *testing.T) { for i, test := range []struct { x, y []float64 indices []int want []float64 }{ { x: []float64{1, 2, 3}, indices: []int{0, 2, 3}, y: []float64{math.NaN(), 0, math.NaN(), math.NaN()}, want: []float64{1, 0, 2, 3}, }, { x: []float64{1, 2, 3}, indices: []int{0, 4, 6}, y: []float64{math.NaN(), 0, 0, 0, math.NaN(), 0, math.NaN(), 0}, want: []float64{1, 0, 0, 0, 2, 0, 3, 0}, }, } { y := mat64.NewVector(len(test.y), test.y) x := NewVector(len(test.y), test.x, test.indices) Scatter(y, x) if !reflect.DeepEqual(test.y, test.want) { t.Errorf("%d: want = %v, got %v\n", i, test.want, test.y) } } }
// MeanBatch predicts the mean at the set of locations specified by x. Stores in-place into yPred // If yPred is nil new memory is allocated. func (g *GP) MeanBatch(yPred []float64, x mat64.Matrix) []float64 { rx, cx := x.Dims() if cx != g.inputDim { panic(badInputLength) } if yPred == nil { yPred = make([]float64, rx) } ry := len(yPred) if rx != ry { panic(badOutputLength) } nSamples, _ := g.inputs.Dims() covariance := mat64.NewDense(nSamples, rx, nil) row := make([]float64, g.inputDim) for j := 0; j < rx; j++ { for k := 0; k < g.inputDim; k++ { row[k] = x.At(j, k) } for i := 0; i < nSamples; i++ { v := g.kernel.Distance(g.inputs.RawRowView(i), row) covariance.Set(i, j, v) } } yPredVec := mat64.NewVector(len(yPred), yPred) yPredVec.MulVec(covariance.T(), g.sigInvY) // Rescale the outputs for i, v := range yPred { yPred[i] = v*g.std + g.mean } return yPred }
func TestDot(t *testing.T) { for _, test := range []struct { n int x, y []float64 indices []int want float64 }{ { n: 5, x: []float64{1, 2, 3}, indices: []int{0, 2, 4}, y: []float64{1, math.NaN(), 3, math.NaN(), 5}, want: 22, }, } { x := NewVector(test.n, test.x, test.indices) y := mat64.NewVector(len(test.y), test.y) got := Dot(x, y) if got != test.want { t.Errorf("want = %v, got %v\n", test.want, got) } } }
// Train sets the paramters of the gaussian process. If noise == true, // the noise parameter is adjusted, otherwise it is not. // TODO(btracey): Need to implement barrier method for parameters. Steps get crazy. func (g *GP) Train(trainNoise bool) error { // TODO(btracey): Implement a memory struct that can be passed around with // all of this data. initHyper := g.kernel.Hyper(nil) nKerHyper := len(initHyper) if trainNoise { initHyper = append(initHyper, math.Log(g.noise)) } mem := newMargLikeMemory(len(initHyper), len(g.outputs)) f := func(x []float64) float64 { fmt.Println("x =", x) obj := g.marginalLikelihood(x, trainNoise, mem) fmt.Println("obj =", obj) return obj } df := func(x, grad []float64) { g.marginalLikelihoodDerivative(x, grad, trainNoise, mem) fmt.Println("x = ", x) fmt.Println("grad = ", grad) } // grad = [0.4500442759224154 -3.074041876494095 0.42568788880060204] /* x := []float64{0.7287793210009457, -0.9371471942974932, -14.017213937483529} fofx := f(x) fmt.Println("fofx", fofx) set := fd.DefaultSettings() set.Method.Step = 1e-4 fdGrad := fd.Gradient(nil, f, x, nil) fmt.Println("fd grad = ", fdGrad) grad := make([]float64, len(fdGrad)) df(x, grad) fmt.Println("real grad = ", grad) os.Exit(1) */ problem := optimize.Problem{ Func: f, Grad: df, } settings := optimize.DefaultSettings() settings.GradientThreshold = 1e-4 result, err := optimize.Local(problem, initHyper, settings, nil) // set noise g.noise = math.Exp(result.X[len(result.X)-1]) g.kernel.SetHyper(result.X[:nKerHyper]) g.setKernelMat(g.k, g.noise) ok := g.cholK.Factorize(g.k) if !ok { return errors.New("gp: final kernel matrix is not positive definite") } v := mat64.NewVector(len(g.outputs), g.outputs) g.sigInvY.SolveCholeskyVec(g.cholK, v) return err }
// LogProb computes the log of the pdf of the point x. func (n *Normal) LogProb(x []float64) float64 { dim := n.dim if len(x) != dim { panic(badSizeMismatch) } // Compute the normalization constant c := -0.5*float64(dim)*logTwoPi - n.logSqrtDet // Compute (x-mu)'Sigma^-1 (x-mu) xMinusMu := make([]float64, dim) floats.SubTo(xMinusMu, x, n.mu) d := mat64.NewVector(dim, xMinusMu) tmp := make([]float64, dim) tmpVec := mat64.NewVector(dim, tmp) tmpVec.SolveCholeskyVec(n.chol, d) return c - 0.5*floats.Dot(tmp, xMinusMu) }
func ExampleCholesky() { // Construct a symmetric positive definite matrix. tmp := mat64.NewDense(4, 4, []float64{ 2, 6, 8, -4, 1, 8, 7, -2, 2, 2, 1, 7, 8, -2, -2, 1, }) var a mat64.SymDense a.SymOuterK(1, tmp) fmt.Printf("a = %0.4v\n", mat64.Formatted(&a, mat64.Prefix(" "))) // Compute the cholesky factorization. var chol mat64.Cholesky if ok := chol.Factorize(&a); !ok { fmt.Println("a matrix is not positive semi-definite.") } // Find the determinant. fmt.Printf("\nThe determinant of a is %0.4g\n\n", chol.Det()) // Use the factorization to solve the system of equations a * x = b. b := mat64.NewVector(4, []float64{1, 2, 3, 4}) var x mat64.Vector if err := x.SolveCholeskyVec(&chol, b); err != nil { fmt.Println("Matrix is near singular: ", err) } fmt.Println("Solve a * x = b") fmt.Printf("x = %0.4v\n", mat64.Formatted(&x, mat64.Prefix(" "))) // Extract the factorization and check that it equals the original matrix. var t mat64.TriDense t.LFromCholesky(&chol) var test mat64.Dense test.Mul(&t, t.T()) fmt.Println() fmt.Printf("L * L^T = %0.4v\n", mat64.Formatted(&a, mat64.Prefix(" "))) // Output: // a = ⎡120 114 -4 -16⎤ // ⎢114 118 11 -24⎥ // ⎢ -4 11 58 17⎥ // ⎣-16 -24 17 73⎦ // // The determinant of a is 1.543e+06 // // Solve a * x = b // x = ⎡ -0.239⎤ // ⎢ 0.2732⎥ // ⎢-0.04681⎥ // ⎣ 0.1031⎦ // // L * L^T = ⎡120 114 -4 -16⎤ // ⎢114 118 11 -24⎥ // ⎢ -4 11 58 17⎥ // ⎣-16 -24 17 73⎦ }
// Rand generates a random number according to the distributon. // If the input slice is nil, new memory is allocated, otherwise the result is stored // in place. func (n *Normal) Rand(x []float64) []float64 { x = reuseAs(x, n.dim) tmp := make([]float64, n.dim) if n.src == nil { for i := range x { tmp[i] = rand.NormFloat64() } } else { for i := range x { tmp[i] = n.src.NormFloat64() } } tmpVec := mat64.NewVector(n.dim, tmp) xVec := mat64.NewVector(n.dim, x) xVec.MulVec(n.chol, true, tmpVec) floats.Add(x, n.mu) return x }
func vectorDistance(vec1, vec2 *mat.Vector) (v float64) { result := mat.NewVector(vec1.Len(), nil) result.SubVec(vec1, vec2) result.MulElemVec(result, result) v = mat.Sum(result) return }
func TestFindIn(t *testing.T) { v := mat.NewVector(4, []float64{ 1, 0, 1, 0, }) x := 1 expectedVec := mat.NewVector(2, []float64{ 0, 2, }) result := findIn(float64(x), v) if !mat.Equal(result, expectedVec) { t.Errorf("Expected \n%v, found \n%v", printMatrix(expectedVec), printMatrix(result)) } }
func TestGradientDescent(t *testing.T) { alpha := 0.01 maxIters := 15000 tolerance := 0.0001 for _, test := range []struct { x *mat64.Dense y *mat64.Vector result *mat64.Vector }{ { mat64.NewDense(3, 4, []float64{ 1, 3, 5, 6, 1, 1, 2, 3, 1, 9, 4, 2}), mat64.NewVector(3, []float64{1, 6, 4}), mat64.NewVector(4, []float64{8.0918, 0.8920, -3.7990, 1.5379}), }, { mat64.NewDense(10, 4, []float64{ 1, 2, 3, 4, 1, 3, 4, 5, 1, 4, 5, 6, 1, 5, 6, 7, 1, 6, 7, 8, 1, 7, 8, 9, 1, 8, 9, 10, 1, 9, 10, 11, 1, 10, 11, 12, 1, 11, 12, 13}), mat64.NewVector(10, []float64{20, 26, 32, 38, 44, 50, 56, 62, 68, 74}), mat64.NewVector(4, []float64{0.6665, 1.3335, 2.0000, 2.6665}), }, } { theta := GradientDescent(test.x, test.y, alpha, tolerance, maxIters) if !mat64.EqualApprox(test.result, theta, 0.0001) { t.Error("Expected:", test.result) t.Error("Actual: ", theta) } } }
func getRowVector(index int, M mat.Matrix) *mat.Vector { _, cols := M.Dims() var rowData []float64 if cols == 0 { rowData = []float64{} } else { rowData = mat.Row(nil, index, M) } return mat.NewVector(cols, rowData) }
func TestMultiHypothesis(t *testing.T) { for _, test := range []struct { theta *mat64.Vector x *mat64.Dense y *mat64.Vector }{ { mat64.NewVector(2, []float64{0, 2}), mat64.NewDense(2, 3, []float64{0, 0, 0, 1, 2, 10}), mat64.NewVector(3, []float64{2, 4, 20}), }, } { h := MultiHypothesis(test.x, test.theta) if !mat64.Equal(h, test.y) { t.Errorf("MultiHypothesis(%v,%v) is expected to be equal to %v, found %v", test.x, test.theta, test.y, h) } } }
// findIn returns the indexes of the values in vec that match scalar func findIn(scalar float64, vec *mat.Vector) *mat.Vector { var result []float64 for i := 0; i < vec.Len(); i++ { if scalar == vec.At(i, 0) { result = append(result, float64(i)) } } return mat.NewVector(len(result), result) }
// AssignCentroid assigns all of the examples in X to one of the groups // in Mu // X -> (m*n), Mu -> (K*n) // returns (m*1) func AssignCentroid(X, Mu mat.Matrix) *mat.Vector { m, _ := X.Dims() idx := mat.NewVector(m, nil) for i := 0; i < m; i++ { x := getRowVector(i, X) idx.SetVec(i, float64(NearestCentroid(x, Mu))) } return idx }
func ExampleExcerpt() { // Excerpt allows diagnostic display of very large // matrices and vectors. // The big matrix is too large to properly print... big := mat64.NewDense(100, 100, nil) for i := 0; i < 100; i++ { big.Set(i, i, 1) } // so only print corner excerpts of the matrix. fmt.Printf("excerpt big identity matrix: %v\n\n", mat64.Formatted(big, mat64.Prefix(" "), mat64.Excerpt(3))) // The long vector is also too large, ... long := mat64.NewVector(100, nil) for i := 0; i < 100; i++ { long.SetVec(i, float64(i)) } // ... so print end excerpts of the vector, fmt.Printf("excerpt long column vector: %v\n\n", mat64.Formatted(long, mat64.Prefix(" "), mat64.Excerpt(3))) // or its transpose. fmt.Printf("excerpt long row vector: %v\n", mat64.Formatted(long.T(), mat64.Prefix(" "), mat64.Excerpt(3))) // Output: // excerpt big identity matrix: Dims(100, 100) // ⎡1 0 0 ... ... 0 0 0⎤ // ⎢0 1 0 0 0 0⎥ // ⎢0 0 1 0 0 0⎥ // . // . // . // ⎢0 0 0 1 0 0⎥ // ⎢0 0 0 0 1 0⎥ // ⎣0 0 0 ... ... 0 0 1⎦ // // excerpt long column vector: Dims(100, 1) // ⎡ 0⎤ // ⎢ 1⎥ // ⎢ 2⎥ // . // . // . // ⎢97⎥ // ⎢98⎥ // ⎣99⎦ // // excerpt long row vector: Dims(1, 100) // [ 0 1 2 ... ... 97 98 99] }