func (self *Layer) Update(learningConfiguration LearningConfiguration) { var deltas mat64.Dense deltas.Mul(self.Deltas, self.Input) rows, cols := self.Weight.Dims() weight := self.Weight.View(0, 0, rows-1, cols).(*mat64.Dense) if *learningConfiguration.Decay > 0 { var decay mat64.Dense decay.Scale(*learningConfiguration.Decay, weight) deltas.Sub(&deltas, decay.T()) } deltas.Scale(*learningConfiguration.Rate, &deltas) weight.Sub(weight, deltas.T()) }
// CovarianceMatrix calculates a covariance matrix (also known as a // variance-covariance matrix) from a matrix of data, using a two-pass // algorithm. The matrix returned will be symmetric and square. // // The weights wts should have the length equal to the number of rows in // input data matrix x. If c is nil, then a new matrix with appropriate size will // be constructed. If c is not nil, it should be a square matrix with the same // number of columns as the input data matrix x, and it will be used as the receiver // for the covariance data. Weights cannot be negative. func CovarianceMatrix(cov *mat64.Dense, x mat64.Matrix, wts []float64) *mat64.Dense { // This is the matrix version of the two-pass algorithm. It doesn't use the // additional floating point error correction that the Covariance function uses // to reduce the impact of rounding during centering. // TODO(jonlawlor): indicate that the resulting matrix is symmetric, and change // the returned type from a *mat.Dense to a *mat.Symmetric. r, c := x.Dims() if cov == nil { cov = mat64.NewDense(c, c, nil) } else if covr, covc := cov.Dims(); covr != covc || covc != c { panic(mat64.ErrShape) } var xt mat64.Dense xt.TCopy(x) // Subtract the mean of each of the columns. for i := 0; i < c; i++ { v := xt.RawRowView(i) // This will panic with ErrShape if len(wts) != len(v), so // we don't have to check the size later. mean := Mean(v, wts) floats.AddConst(-mean, v) } var n float64 if wts == nil { n = float64(r) cov.MulTrans(&xt, false, &xt, true) // Scale by the sample size. cov.Scale(1/(n-1), cov) return cov } // Multiply by the sqrt of the weights, so that multiplication is symmetric. sqrtwts := make([]float64, r) for i, w := range wts { if w < 0 { panic("stat: negative covariance matrix weights") } sqrtwts[i] = math.Sqrt(w) } // Weight the rows. for i := 0; i < c; i++ { v := xt.RawRowView(i) floats.Mul(v, sqrtwts) } // Calculate the normalization factor. n = floats.Sum(wts) cov.MulTrans(&xt, false, &xt, true) // Scale by the sample size. cov.Scale(1/(n-1), cov) return cov }
func nnlsSubproblem(V, W, Ho *mat64.Dense, tol float64, outer, inner int) (H, G *mat64.Dense, i int, ok bool) { H = new(mat64.Dense) H.Clone(Ho) var WtV, WtW mat64.Dense WtV.Mul(W.T(), V) WtW.Mul(W.T(), W) alpha, beta := 1., 0.1 decFilt := func(r, c int, v float64) float64 { // decFilt is applied to G, so v = G.At(r, c). if v < 0 || H.At(r, c) > 0 { return v } return 0 } G = new(mat64.Dense) for i = 0; i < outer; i++ { G.Mul(&WtW, H) G.Sub(G, &WtV) G.Apply(decFilt, G) if mat64.Norm(G, 2) < tol { break } var ( reduce bool Hp *mat64.Dense d, dQ mat64.Dense ) for j := 0; j < inner; j++ { var Hn mat64.Dense Hn.Scale(alpha, G) Hn.Sub(H, &Hn) Hn.Apply(posFilt, &Hn) d.Sub(&Hn, H) dQ.Mul(&WtW, &d) dQ.MulElem(&dQ, &d) d.MulElem(G, &d) sufficient := 0.99*mat64.Sum(&d)+0.5*mat64.Sum(&dQ) < 0 if j == 0 { reduce = !sufficient Hp = H } if reduce { if sufficient { H = &Hn ok = true break } else { alpha *= beta } } else { if !sufficient || mat64.Equal(Hp, &Hn) { H = Hp break } else { alpha /= beta Hp = &Hn } } } } return H, G, i, ok }