func main() { flag.Parse() if flag.NArg() != 1 { fmt.Println("Usage: go run samples/tsp.go ROUTEFILEPATH") return } var routeFileName = flag.Arg(0) if !File.Exists(routeFileName) { fmt.Println("file " + routeFileName + " does not exist.") return } fmt.Println("using route file: " + routeFileName) idToPointLookup := readPoints(routeFileName) fmt.Println("read " + strconv.Itoa(len(idToPointLookup)) + " points...") calc := func(candidate string) int { return getFitness(candidate, idToPointLookup) } if File.Exists(routeFileName + ".opt.tour") { fmt.Println("found optimal solution file: " + routeFileName + ".opt") optimalRoute := readOptimalRoute(routeFileName+".opt.tour", len(idToPointLookup)) fmt.Println("read " + strconv.Itoa(len(optimalRoute)) + " segments in the optimal route") points := getPointsInOptimalOrder(idToPointLookup, optimalRoute) genes := genericGeneSet[0:len(idToPointLookup)] idToPointLookup = make(map[string]Point, len(idToPointLookup)) for i, v := range points { idToPointLookup[genericGeneSet[i:i+1]] = v } fmt.Print("optimal route: " + genes) fmt.Print("\t") fmt.Println(getFitness(genes, idToPointLookup)) } geneSet := genericGeneSet[0:len(idToPointLookup)] start := time.Now() disp := func(candidate string) { fmt.Print(candidate) fmt.Print("\t") fmt.Print(getFitness(candidate, idToPointLookup)) fmt.Print("\t") fmt.Println(time.Since(start)) } var solver = new(genetic.Solver) solver.MaxSecondsToRunWithoutImprovement = 20 solver.LowerFitnessesAreBetter = true var best = solver.GetBest(calc, disp, geneSet, len(idToPointLookup), 1) fmt.Println() fmt.Println(best, "\t", getFitness(best, idToPointLookup)) fmt.Print("Total time: ") fmt.Println(time.Since(start)) }
func main() { flag.Parse() if flag.NArg() != 1 { fmt.Println("Usage: go run standard.go RESOURCEFILEPATH") return } var resourceFileName = flag.Arg(0) if !File.Exists(resourceFileName) { fmt.Println("file " + resourceFileName + " does not exist.") return } fmt.Println("using resource file: " + resourceFileName) resources, maxWeight, solution := loadResources(resourceFileName) optimalFitness := 0 for resource, count := range solution { optimalFitness += resource.value * count } calc := func(candidate string) int { decoded := decodeGenes(candidate, resources) return getFitness(decoded, maxWeight, optimalFitness) } start := time.Now() disp := func(candidate string) { decoded := decodeGenes(candidate, resources) fitness := getFitness(decoded, maxWeight, optimalFitness) display(decoded, fitness, time.Since(start), true) } var solver = new(genetic.Solver) solver.MaxSecondsToRunWithoutImprovement = 5 solver.MaxRoundsWithoutImprovement = 3 var best = solver.GetBestUsingHillClimbing(calc, disp, hexLookup, 10, numberOfGenesPerChromosome, optimalFitness) fmt.Print("\nFinal: ") decoded := decodeGenes(best, resources) fitness := getFitness(decoded, maxWeight, optimalFitness) display(decoded, fitness, time.Since(start), false) if fitness == optimalFitness { fmt.Println("-- that's the optimal solution!") } else { percentOptimal := float32(100) * float32(fitness) / float32(optimalFitness) fmt.Printf("-- that's %f%% optimal\n", percentOptimal) } }