// Compute element-wise product C[i,j] = A[i,j] * B[i,j]. Returns new matrix. func Mul(A, B *matrix.ComplexMatrix) *matrix.ComplexMatrix { if !A.SizeMatch(B.Size()) { return nil } C := A.Copy() return C.Mul(B) }
// Makes a copy of A and for all elements pointed by the element of the indexes array // calculates fn(A[k], values[i]) where k is the i'th value in the indexes array. func ApplyConstValues(A *matrix.ComplexMatrix, values []complex128, fn func(complex128, complex128) complex128, indexes []int) *matrix.ComplexMatrix { if A == nil { return A } C := A.Copy() return C.ApplyConstValues(values, fn, indexes) }
// Make a copy C of A and apply function fn element wise to C. // For indexes is not empty then C[indexes[i]] = fn(C[indexes[i]], x). // Returns a new matrix. func ApplyConst(A *matrix.ComplexMatrix, x complex128, fn func(complex128, complex128) complex128, indexes ...int) *matrix.ComplexMatrix { if A == nil { return nil } C := A.Copy() return C.ApplyConst(x, fn, indexes...) }
// Make copy C of A and compute C[indexes[i]] += values[i]. Indexes are in column-major order. // Returns a new matrix. func AddAt(A *matrix.ComplexMatrix, values []complex128, indexes []int) *matrix.ComplexMatrix { C := A.Copy() if len(indexes) == 0 { return C } Cr := C.ComplexArray() N := A.NumElements() for i, k := range indexes { if i >= len(values) { return C } if k < 0 { k = N + k } Cr[k] += values[i] } return C }
// Make a copy C of A and compute C += alpha for all elements in the matrix if list of indexes // is empty. Otherwise compute C[i] += alpha for indexes in column-major order. func Add(A *matrix.ComplexMatrix, alpha complex128, indexes ...int) *matrix.ComplexMatrix { C := A.Copy() return C.Add(alpha, indexes...) }
// Make a copy C of A and compute inverse C[i] = 1.0/C[i]. If indexes is empty calculates for // all elements. Returns a new matrix. func Inv(A *matrix.ComplexMatrix, indexes ...int) *matrix.ComplexMatrix { C := A.Copy() return C.Inv() }