func syrkTest(t *testing.T, C, A *matrix.FloatMatrix, flags Flags, vlen, nb int) bool { //var B0 *matrix.FloatMatrix P := A.Cols() S := 0 E := C.Rows() C0 := C.Copy() trans := linalg.OptNoTrans if flags&TRANSA != 0 { trans = linalg.OptTrans P = A.Rows() } uplo := linalg.OptUpper if flags&LOWER != 0 { uplo = linalg.OptLower } blas.SyrkFloat(A, C0, 1.0, 1.0, uplo, trans) if A.Rows() < 8 { //t.Logf("..A\n%v\n", A) t.Logf(" BLAS C0:\n%v\n", C0) } Ar := A.FloatArray() Cr := C.FloatArray() DSymmRankBlk(Cr, Ar, 1.0, 1.0, flags, C.LeadingIndex(), A.LeadingIndex(), P, S, E, vlen, nb) result := C0.AllClose(C) t.Logf(" C0 == C: %v\n", result) if A.Rows() < 8 { t.Logf(" DMRank C:\n%v\n", C) } return result }
func (gp *gpConvexProg) F2(x, z *matrix.FloatMatrix) (f, Df, H *matrix.FloatMatrix, err error) { err = nil f = matrix.FloatZeros(gp.mnl+1, 1) Df = matrix.FloatZeros(gp.mnl+1, gp.n) H = matrix.FloatZeros(gp.n, gp.n) y := gp.g.Copy() Fsc := matrix.FloatZeros(gp.maxK, gp.n) blas.GemvFloat(gp.F, x, y, 1.0, 1.0) //fmt.Printf("y=\n%v\n", y.ToString("%.3f")) for i, s := range gp.ind { start := s[0] stop := s[1] // yi := exp(yi) = exp(Fi*x+gi) ymax := maxvec(y.FloatArray()[start:stop]) ynew := matrix.Exp(matrix.FloatVector(y.FloatArray()[start:stop]).Add(-ymax)) y.SetIndexesFromArray(ynew.FloatArray(), matrix.Indexes(start, stop)...) // fi = log sum yi = log sum exp(Fi*x+gi) ysum := blas.AsumFloat(y, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start}) f.SetIndex(i, ymax+math.Log(ysum)) blas.ScalFloat(y, 1.0/ysum, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start}) blas.GemvFloat(gp.F, y, Df, 1.0, 0.0, la.OptTrans, &la.IOpt{"m", stop - start}, &la.IOpt{"incy", gp.mnl + 1}, &la.IOpt{"offseta", start}, &la.IOpt{"offsetx", start}, &la.IOpt{"offsety", i}) Fsc.SetSubMatrix(0, 0, gp.F.GetSubMatrix(start, 0, stop-start)) for k := start; k < stop; k++ { blas.AxpyFloat(Df, Fsc, -1.0, &la.IOpt{"n", gp.n}, &la.IOpt{"incx", gp.mnl + 1}, &la.IOpt{"incy", Fsc.Rows()}, &la.IOpt{"offsetx", i}, &la.IOpt{"offsety", k - start}) blas.ScalFloat(Fsc, math.Sqrt(y.GetIndex(k)), &la.IOpt{"inc", Fsc.Rows()}, &la.IOpt{"offset", k - start}) } // H += z[i]*Hi = z[i] *Fisc' * Fisc blas.SyrkFloat(Fsc, H, z.GetIndex(i), 1.0, la.OptTrans, &la.IOpt{"k", stop - start}) } return }
// Computes analytic center of A*x <= b with A m by n of rank n. // We assume that b > 0 and the feasible set is bounded. func Acent(A, b *matrix.FloatMatrix, niters int) (*matrix.FloatMatrix, []float64) { if niters <= 0 { niters = MAXITERS } ntdecrs := make([]float64, 0, niters) if A.Rows() != b.Rows() { return nil, nil } m, n := A.Size() x := matrix.FloatZeros(n, 1) H := matrix.FloatZeros(n, n) // Helper m*n matrix Dmn := matrix.FloatZeros(m, n) for i := 0; i < niters; i++ { // Gradient is g = A^T * (1.0/(b - A*x)). d = 1.0/(b - A*x) // d is m*1 matrix, g is n*1 matrix d := matrix.Minus(b, matrix.Times(A, x)).Inv() g := matrix.Times(A.Transpose(), d) // Hessian is H = A^T * diag(1./(b-A*x))^2 * A. // in the original python code expression d[:,n*[0]] creates // a m*n matrix where each column is copy of column 0. // We do it here manually. for i := 0; i < n; i++ { Dmn.SetColumn(i, d) } // Function mul creates element wise product of matrices. Asc := matrix.Mul(Dmn, A) blas.SyrkFloat(Asc, H, 1.0, 0.0, linalg.OptTrans) // Newton step is v = H^-1 * g. v := g.Copy().Scale(-1.0) lapack.PosvFloat(H, v) // Directional derivative and Newton decrement. lam := blas.DotFloat(g, v) ntdecrs = append(ntdecrs, math.Sqrt(-lam)) if ntdecrs[len(ntdecrs)-1] < TOL { fmt.Printf("last Newton decrement < TOL(%v)\n", TOL) return x, ntdecrs } // Backtracking line search. // y = d .* A*v y := d.Mul(A.Times(v)) step := 1.0 for 1-step*y.Max() < 0 { step *= BETA } search: for { // t = -step*y t := y.Copy().Scale(-step) // t = (1 + t) [e.g. t = 1 - step*y] t.Add(1.0) // ts = sum(log(1-step*y)) ts := t.Log().Sum() if -ts < ALPHA*step*lam { break search } step *= BETA } v.Scale(step) x = x.Plus(v) } // no solution !! fmt.Printf("Iteration %d exhausted\n", niters) return x, ntdecrs }