// 根据正则化方法计算偏导数向量需要添加正则化项 func ComputeRegularization(weights *util.Matrix, options OptimizerOptions) *util.Matrix { reg := weights.Populate() if options.RegularizationScheme == 1 { // L-1正则化 for iLabel := 0; iLabel < weights.NumLabels(); iLabel++ { for _, k := range weights.GetValues(iLabel).Keys() { if weights.Get(iLabel, k) > 0 { reg.Set(iLabel, k, options.RegularizationFactor) } else { reg.Set(iLabel, k, -options.RegularizationFactor) } } } } else if options.RegularizationScheme == 2 { // L-2正则化 for iLabel := 0; iLabel < weights.NumLabels(); iLabel++ { for _, k := range weights.GetValues(iLabel).Keys() { reg.Set(iLabel, k, options.RegularizationFactor*float64(2)*weights.Get(iLabel, k)) } } } return reg }
func (opt *gdOptimizer) OptimizeWeights( weights *util.Matrix, derivative_func ComputeInstanceDerivativeFunc, set data.Dataset) { // 偏导数向量 derivative := weights.Populate() // 学习率计算器 learningRate := NewLearningRate(opt.options) // 优化循环 iterator := set.CreateIterator() step := 0 var learning_rate float64 convergingSteps := 0 oldWeights := weights.Populate() weightsDelta := weights.Populate() instanceDerivative := weights.Populate() log.Print("开始梯度递降优化") for { if opt.options.MaxIterations > 0 && step >= opt.options.MaxIterations { break } step++ // 每次遍历样本前对偏导数向量清零 derivative.Clear() // 遍历所有样本,计算偏导数向量并累加 iterator.Start() instancesProcessed := 0 for !iterator.End() { instance := iterator.GetInstance() derivative_func(weights, instance, instanceDerivative) derivative.Increment(instanceDerivative, 1.0/float64(set.NumInstances())) iterator.Next() instancesProcessed++ if opt.options.GDBatchSize > 0 && instancesProcessed >= opt.options.GDBatchSize { // 添加正则化项 derivative.Increment(ComputeRegularization(weights, opt.options), float64(instancesProcessed)/(float64(set.NumInstances())*float64(set.NumInstances()))) // 计算特征权重的增量 delta := opt.GetDeltaX(weights, derivative) // 根据学习率更新权重 learning_rate = learningRate.ComputeLearningRate(delta) weights.Increment(delta, learning_rate) // 重置 derivative.Clear() instancesProcessed = 0 } } if instancesProcessed > 0 { // 处理剩余的样本 derivative.Increment(ComputeRegularization(weights, opt.options), float64(instancesProcessed)/(float64(set.NumInstances())*float64(set.NumInstances()))) delta := opt.GetDeltaX(weights, derivative) learning_rate = learningRate.ComputeLearningRate(delta) weights.Increment(delta, learning_rate) } weightsDelta.WeightedSum(weights, oldWeights, 1, -1) oldWeights.DeepCopy(weights) weightsNorm := weights.Norm() weightsDeltaNorm := weightsDelta.Norm() log.Printf("#%d |w|=%1.3g |dw|/|w|=%1.3g lr=%1.3g", step, weightsNorm, weightsDeltaNorm/weightsNorm, learning_rate) // 判断是否溢出 if math.IsNaN(weightsNorm) { log.Fatal("优化失败:不收敛") } // 判断是否收敛 if weightsDelta.Norm()/weights.Norm() < opt.options.ConvergingDeltaWeight { convergingSteps++ if convergingSteps > opt.options.ConvergingSteps { log.Printf("收敛") break } } } }
func (opt *lbfgsOptimizer) OptimizeWeights( weights *util.Matrix, derivative_func ComputeInstanceDerivativeFunc, set data.Dataset) { // 学习率计算器 learningRate := NewLearningRate(opt.options) // 偏导数向量 derivative := weights.Populate() // 优化循环 step := 0 convergingSteps := 0 oldWeights := weights.Populate() weightsDelta := weights.Populate() // 为各个工作协程开辟临时资源 numLbfgsThreads := *lbfgs_threads if numLbfgsThreads == 0 { numLbfgsThreads = runtime.NumCPU() } workerSet := make([]data.Dataset, numLbfgsThreads) workerDerivative := make([]*util.Matrix, numLbfgsThreads) workerInstanceDerivative := make([]*util.Matrix, numLbfgsThreads) for iWorker := 0; iWorker < numLbfgsThreads; iWorker++ { workerBuckets := []data.SkipBucket{ {true, iWorker}, {false, 1}, {true, numLbfgsThreads - 1 - iWorker}, } workerSet[iWorker] = data.NewSkipDataset(set, workerBuckets) workerDerivative[iWorker] = weights.Populate() workerInstanceDerivative[iWorker] = weights.Populate() } log.Print("开始L-BFGS优化") for { if opt.options.MaxIterations > 0 && step >= opt.options.MaxIterations { break } step++ // 开始工作协程 workerChannel := make(chan int, numLbfgsThreads) for iWorker := 0; iWorker < numLbfgsThreads; iWorker++ { go func(iw int) { workerDerivative[iw].Clear() iterator := workerSet[iw].CreateIterator() iterator.Start() for !iterator.End() { instance := iterator.GetInstance() derivative_func( weights, instance, workerInstanceDerivative[iw]) // log.Print(workerInstanceDerivative[iw].GetValues(0)) workerDerivative[iw].Increment( workerInstanceDerivative[iw], float64(1)/float64(set.NumInstances())) iterator.Next() } workerChannel <- iw }(iWorker) } derivative.Clear() // 等待工作协程结束 for iWorker := 0; iWorker < numLbfgsThreads; iWorker++ { <-workerChannel } for iWorker := 0; iWorker < numLbfgsThreads; iWorker++ { derivative.Increment(workerDerivative[iWorker], 1) } // 添加正则化项 derivative.Increment(ComputeRegularization(weights, opt.options), 1.0/float64(set.NumInstances())) // 计算特征权重的增量 delta := opt.GetDeltaX(weights, derivative) // 根据学习率更新权重 learning_rate := learningRate.ComputeLearningRate(delta) weights.Increment(delta, learning_rate) weightsDelta.WeightedSum(weights, oldWeights, 1, -1) oldWeights.DeepCopy(weights) weightsNorm := weights.Norm() weightsDeltaNorm := weightsDelta.Norm() log.Printf("#%d |dw|/|w|=%f |w|=%f lr=%1.3g", step, weightsDeltaNorm/weightsNorm, weightsNorm, learning_rate) // 判断是否溢出 if math.IsNaN(weightsNorm) { log.Fatal("优化失败:不收敛") } // 判断是否收敛 if weightsDeltaNorm/weightsNorm < opt.options.ConvergingDeltaWeight { convergingSteps++ if convergingSteps > opt.options.ConvergingSteps { log.Printf("收敛") break } } else { convergingSteps = 0 } } }