func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) { // The cubic Bézier approximation to a circle involves the magic number // (√2 - 1) * 4/3, which is approximately 141/256. const k = 141 e := pRot90CCW(n1) side := pivot.Add(e) start, end := pivot.Sub(n1), pivot.Add(n1) d, e := n1.Mul(k), e.Mul(k) p.Add3(start.Add(e), side.Sub(d), side) p.Add3(side.Add(d), end.Add(e), end) }
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of // the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The // two vectors n0 and n1 must be of equal length. func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) { // r2 is the square of the length of n0. r2 := pDot(n0, n0) if r2 < epsilon { // The arc radius is so small that we collapse to a straight line. p.Add1(pivot.Add(n1)) return } // We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus // a final quadratic segment from s to n1. Each 45-degree segment has // control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled, // rotated and translated. tan(π/8) is approximately 106/256. const tpo8 = 106 var s fixed.Point26_6 // We determine which octant the angle between n0 and n1 is in via three // dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135 // degrees. m0 := pRot45CW(n0) m1 := pRot90CW(n0) m2 := pRot90CW(m0) if pDot(m1, n1) >= 0 { if pDot(n0, n1) >= 0 { if pDot(m2, n1) <= 0 { // n1 is between 0 and 45 degrees clockwise of n0. s = n0 } else { // n1 is between 45 and 90 degrees clockwise of n0. p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0)) s = m0 } } else { pm1, n0t := pivot.Add(m1), n0.Mul(tpo8) p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0)) p.Add2(pm1.Add(n0t), pm1) if pDot(m0, n1) >= 0 { // n1 is between 90 and 135 degrees clockwise of n0. s = m1 } else { // n1 is between 135 and 180 degrees clockwise of n0. p.Add2(pm1.Sub(n0t), pivot.Add(m2)) s = m2 } } } else { if pDot(n0, n1) >= 0 { if pDot(m0, n1) >= 0 { // n1 is between 0 and 45 degrees counter-clockwise of n0. s = n0 } else { // n1 is between 45 and 90 degrees counter-clockwise of n0. p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2)) s = pNeg(m2) } } else { pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8) p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2)) p.Add2(pm1.Add(n0t), pm1) if pDot(m2, n1) <= 0 { // n1 is between 90 and 135 degrees counter-clockwise of n0. s = pNeg(m1) } else { // n1 is between 135 and 180 degrees counter-clockwise of n0. p.Add2(pm1.Sub(n0t), pivot.Sub(m0)) s = pNeg(m0) } } } // The final quadratic segment has two endpoints s and n1 and the middle // control point is a multiple of s.Add(n1), i.e. it is on the angle // bisector of those two points. The multiple ranges between 128/256 and // 150/256 as the angle between s and n1 ranges between 0 and 45 degrees. // // When the angle is 0 degrees (i.e. s and n1 are coincident) then // s.Add(n1) is twice s and so the middle control point of the degenerate // quadratic segment should be half s.Add(n1), and half = 128/256. // // When the angle is 45 degrees then 150/256 is the ratio of the lengths of // the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}. // // d is the normalized dot product between s and n1. Since the angle ranges // between 0 and 45 degrees then d ranges between 256/256 and 181/256. d := 256 * pDot(s, n1) / r2 multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2 p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1)) }