func muteprotoFetch( myID, contactID string, msgDB *msgdb.MsgDB, c *cli.Context, privkey, server string, lastMessageTime int64, ) (newMessageTime int64, err error) { log.Debug("muteprotoFetch()") args := []string{ "--homedir", c.GlobalString("homedir"), "--loglevel", c.GlobalString("loglevel"), "--logdir", c.GlobalString("logdir"), "fetch", "--server", server, "--last-message-time", strconv.FormatInt(lastMessageTime, 10), } cmd := exec.Command("muteproto", args...) stdout, err := cmd.StdoutPipe() if err != nil { return 0, err } stderr, err := cmd.StderrPipe() if err != nil { return 0, err } ppR, ppW, err := os.Pipe() if err != nil { return 0, err } defer ppR.Close() ppW.Write([]byte(privkey)) ppW.Close() cmd.ExtraFiles = append(cmd.ExtraFiles, ppR) cmdR, cmdW, err := os.Pipe() if err != nil { return 0, err } defer cmdR.Close() defer cmdW.Close() cmd.ExtraFiles = append(cmd.ExtraFiles, cmdR) if err := cmd.Start(); err != nil { return 0, err } var outbuf bytes.Buffer status := bufio.NewReader(stderr) input := make(chan []byte) go func() { for { buf := make([]byte, 4096) n, err := stdout.Read(buf) if n > 0 { input <- buf[:n] } if err != nil { if err == io.EOF { return } log.Error(err) return } } }() firstMessage := true cache, err := msgDB.GetMessageIDCache(myID, contactID) if err != nil { return 0, err } for { // read status output line, err := status.ReadString('\n') if err != nil { return 0, log.Error(err) } line = strings.TrimSpace(line) if line == "NONE" { log.Debug("read: NONE") break } if strings.HasSuffix(line, "accountdb: nothing found") { log.Info("account has no messages") return 0, nil } parts := strings.Split(line, "\t") if len(parts) != 2 || parts[0] != "MESSAGEID:" { return 0, log.Errorf("ctrlengine: MESSAGEID line expected from muteproto, got: %s", line) } messageID := parts[1] log.Debugf("read: MESSAGEID:\t%s", messageID) if cache[messageID] { // message known -> abort fetching messages and remove old IDs from cache log.Debug("write: QUIT") fmt.Fprintln(cmdW, "QUIT") err := msgDB.RemoveMessageIDCache(myID, contactID, messageID) if err != nil { return 0, log.Error(err) } break } else { // message unknown -> fetch it and add messageID to cache log.Debug("write: NEXT") fmt.Fprintln(cmdW, "NEXT") err := msgDB.AddMessageIDCache(myID, contactID, messageID) if err != nil { return 0, log.Error(err) } } // read message stop := make(chan uint64) done := make(chan bool) go func() { for { select { case buf := <-input: outbuf.Write(buf) case length := <-stop: for uint64(outbuf.Len()) < length { buf := <-input outbuf.Write(buf) } done <- true return } } }() // read LENGTH line, err = status.ReadString('\n') if err != nil { return 0, log.Error(err) } parts = strings.Split(strings.TrimRight(line, "\n"), "\t") if len(parts) != 2 || parts[0] != "LENGTH:" { return 0, log.Errorf("ctrlengine: LENGTH line expected from muteproto, got: %s", line) } length, err := strconv.ParseUint(parts[1], 10, 64) if err != nil { return 0, log.Error(err) } log.Debugf("read: LENGTH:\t%d", length) // read RECEIVETIME line, err = status.ReadString('\n') if err != nil { return 0, log.Error(err) } parts = strings.Split(strings.TrimRight(line, "\n"), "\t") if len(parts) != 2 || parts[0] != "RECEIVETIME:" { return 0, log.Errorf("ctrlengine: RECEIVETIME line expected from muteproto, got: %s", line) } receiveTime, err := strconv.ParseInt(parts[1], 10, 64) if err != nil { return 0, log.Error(err) } log.Debugf("read: RECEIVETIME:\t%d", receiveTime) stop <- length <-done err = msgDB.AddInQueue(myID, contactID, receiveTime, outbuf.String()) if err != nil { return 0, err } if firstMessage { newMessageTime = receiveTime firstMessage = false } outbuf.Reset() } if err := cmd.Wait(); err != nil { return 0, err } return }
func (ce *CtrlEngine) procInQueue(c *cli.Context, host string) error { log.Debug("procInQueue()") for { // get message from msgDB iqIdx, myID, contactID, msg, envelope, err := ce.msgDB.GetInQueue() if err != nil { return err } if myID == "" { log.Debug("no more messages in inqueue") break // no more messages in inqueue } if envelope { log.Debugf("decrypt envelope (iqIdx=%d)", iqIdx) // decrypt envelope message, err := base64.Decode(msg) if err != nil { return log.Error(err) } privkey, server, secret, _, _, _, err := ce.msgDB.GetAccount(myID, contactID) if err != nil { return err } receiveTemplate := nymaddr.AddressTemplate{ Secret: secret[:], } var pubkey [32]byte copy(pubkey[:], privkey[32:]) dec, nym, err := mixcrypt.ReceiveFromMix(receiveTemplate, util.MailboxAddress(&pubkey, server), message) if err != nil { return log.Error(err) } if !bytes.Equal(nym, cipher.SHA256([]byte(myID))) { // discard message log.Warnf("ctrlengine: hashed nym does not match %s -> discard message", myID) if err := ce.msgDB.DelInQueue(iqIdx); err != nil { return err } } else { log.Info("envelope successfully decrypted") err := ce.msgDB.SetInQueue(iqIdx, base64.Encode(dec)) if err != nil { return err } } } else { log.Debugf("decrypt message (iqIdx=%d)", iqIdx) senderID, plainMsg, err := mutecryptDecrypt(c, ce.passphrase, []byte(msg), ce.fileTable.StatusFP) if err != nil { return err } if senderID == "" { // message could not be decrypted, but we do not want to fail if err := ce.msgDB.DelInQueue(iqIdx); err != nil { return err } continue } // check if contact exists contact, _, contactType, err := ce.msgDB.GetContact(myID, senderID) if err != nil { return log.Error(err) } // TODO: we do not have to do request UID message from server // here, but we should use the one contained in the message and // compare it with hash chain entry (doesn't compromise anonymity) var drop bool if contact == "" { err := ce.contactAdd(myID, senderID, "", host, msgdb.GrayList, c) if err != nil { return log.Error(err) } } else if contactType == msgdb.BlackList { // messages from black listed contacts are dropped directly log.Debug("message from black listed contact dropped") drop = true } err = ce.msgDB.RemoveInQueue(iqIdx, plainMsg, senderID, drop) if err != nil { return err } } } return nil }
func (ce *CtrlEngine) msgSend( c *cli.Context, id string, all bool, failDelivery bool, ) error { nyms, err := ce.getNyms(id, all) if err != nil { return err } for _, nym := range nyms { // clear resend status for old messages in outqueue if err := ce.msgDB.ClearResendOutQueue(nym); err != nil { return err } // process old messages in outqueue if err := ce.procOutQueue(c, nym, failDelivery); err != nil { return err } /* ids, err := ce.msgDB.GetMsgIDs(nym) if err != nil { return err } for _, id := range ids { log.Debugf("id=%d, to=%s", id.MsgID, id.To) } */ // add all undelivered messages to outqueue var recvNymAddress string for { msgID, peer, msg, sign, minDelay, maxDelay, err := ce.msgDB.GetUndeliveredMessage(nym) if err != nil { return err } if peer == "" { log.Debug("break") break // no more undelivered messages } // determine recipient nymaddress for encryption, if necessary if recvNymAddress == "" { // TODO! (implement more accounts? delay settings?) privkey, server, secret, minDelay, maxDelay, _, err := ce.msgDB.GetAccount(nym, "") if err != nil { return err } _, domain, err := identity.Split(nym) if err != nil { return err } expire := times.ThirtyDaysLater() // TODO: make this settable singleUse := false // TODO correct? var pubkey [ed25519.PublicKeySize]byte copy(pubkey[:], privkey[32:]) _, recvNymAddress, err = util.NewNymAddress(domain, secret[:], expire, singleUse, minDelay, maxDelay, nym, &pubkey, server, def.CACert) if err != nil { return err } } // encrypt enc, nymaddress, err := mutecryptEncrypt(c, nym, peer, ce.passphrase, msg, sign, recvNymAddress) if err != nil { return log.Error(err) } // add to outqueue log.Debug("add") err = ce.msgDB.AddOutQueue(nym, msgID, enc, nymaddress, minDelay, maxDelay) if err != nil { return log.Error(err) } } // process new messages in outqueue if err := ce.procOutQueue(c, nym, failDelivery); err != nil { return err } } return nil }
func (ce *CtrlEngine) procOutQueue( c *cli.Context, nym string, failDelivery bool, ) error { log.Debug("procOutQueue()") for { oqIdx, msg, nymaddress, minDelay, maxDelay, envelope, err := ce.msgDB.GetOutQueue(nym) if err != nil { return err } if msg == "" { log.Debug("break") break // no more messages in outqueue } if !envelope { log.Debug("envelope") // parse nymaddress na, err := base64.Decode(nymaddress) if err != nil { return log.Error(na) } addr, err := nymaddr.ParseAddress(na) if err != nil { return err } // get token from wallet var pubkey [32]byte copy(pubkey[:], addr.TokenPubKey) token, err := wallet.GetToken(ce.client, "Message", &pubkey) if err != nil { return err } // `muteproto create` env, err := muteprotoCreate(c, msg, minDelay, maxDelay, base64.Encode(token.Token), nymaddress) if err != nil { return log.Error(err) } // update outqueue if err := ce.msgDB.SetOutQueue(oqIdx, env); err != nil { ce.client.UnlockToken(token.Hash) return err } ce.client.DelToken(token.Hash) msg = env } // `muteproto deliver` if failDelivery { return log.Error(ErrDeliveryFailed) } sendTime := times.Now() + int64(minDelay) // earliest resend, err := muteprotoDeliver(c, msg) if err != nil { // If the message delivery failed because the token expired in the // meantime we retract the message from the outqueue (setting it // back to 'ToSend') and start the delivery process for this // message all over again. // Matching the error message string is not optimal, but the best // available solution since the error results from calling another // binary (muteproto). if strings.HasSuffix(err.Error(), client.ErrFinal.Error()) { log.Debug("retract") if err := ce.msgDB.RetractOutQueue(oqIdx); err != nil { return err } continue } return log.Error(err) } if resend { // set resend status log.Debug("resend") if err := ce.msgDB.SetResendOutQueue(oqIdx); err != nil { return err } } else { // remove from outqueue log.Debug("remove") if err := ce.msgDB.RemoveOutQueue(oqIdx, sendTime); err != nil { return err } } } return nil }
// Decrypt decrypts a message with the argument given in args. // The senderID is returned. // If the message was signed and the signature could be verified successfully // the base64 encoded signature is returned. If the message was signed and the // signature could not be verfied an error is returned. func Decrypt(args *DecryptArgs) (senderID, sig string, err error) { log.Debug("msg.Decrypt()") // set default if args.NumOfKeys == 0 { args.NumOfKeys = NumOfFutureKeys } // read pre-header ph, err := readPreHeader(bytes.NewBuffer(args.PreHeader)) if err != nil { return "", "", err } if ph.LengthSenderHeaderPub != 32 { return "", "", log.Errorf("msg: ph.LengthSenderHeaderPub != 32") } var senderHeaderPub [32]byte copy(senderHeaderPub[:], ph.SenderHeaderPub) // read header packet oh, err := readOuterHeader(args.Reader) if err != nil { return "", "", err } if oh.Type != encryptedHeader { return "", "", log.Error(ErrNotEncryptedHeader) } count := uint32(1) if oh.PacketCount != count { return "", "", log.Error(ErrWrongCount) } count++ identity, h, err := readHeader(&senderHeaderPub, args.Identities, bytes.NewBuffer(oh.inner)) if err != nil { return "", "", err } senderID = h.SenderIdentity recipientID := identity.PubKey() log.Debugf("senderID: %s", h.SenderIdentityPub.HASH) log.Debugf("recipientID: %s", recipientID.HASH) log.Debugf("h.SenderSessionCount: %d", h.SenderSessionCount) log.Debugf("h.SenderMessageCount: %d", h.SenderMessageCount) log.Debugf("h.SenderSessionPub: %s", h.SenderSessionPub.HASH) if h.NextSenderSessionPub != nil { log.Debugf("h.NextSenderSessionPub: %s", h.NextSenderSessionPub.HASH) } if h.NextRecipientSessionPubSeen != nil { log.Debugf("h.NextRecipientSessionPubSeen: %s", h.NextRecipientSessionPubSeen.HASH) } // proc sender UID in parallel res := make(chan *procUIDResult, 1) go procUID(h.SenderUID, res) // get session state sender := h.SenderIdentity recipient := identity.Identity() log.Debugf("%s -> %s", sender, recipient) sessionStateKey := session.CalcStateKey(recipientID.PublicKey32(), h.SenderIdentityPub.PublicKey32()) ss, err := args.KeyStore.GetSessionState(sessionStateKey) if err != nil { return "", "", err } sessionKey := session.CalcKey(recipientID.HASH, h.SenderIdentityPub.HASH, h.RecipientTempHash, h.SenderSessionPub.HASH) if !args.KeyStore.HasSession(sessionKey) { // session unknown // try to start session from KeyInit message recipientKI, err := args.KeyStore.GetPrivateKeyEntry(h.RecipientTempHash) if err != nil && err != session.ErrNoKeyEntry { return "", "", err } if err != session.ErrNoKeyEntry { // KeyInit message found // root key agreement err = rootKeyAgreementRecipient(&senderHeaderPub, sender, recipient, &h.SenderSessionPub, &h.SenderIdentityPub, recipientKI, recipientID, nil, args.NumOfKeys, args.KeyStore) if err != nil { return "", "", err } // TODO: delete single-use KeyInit message // use the 'smaller' session as the definite one // TODO: h.SenderSessionPub.HASH < ss.SenderSessionPub.HASH if ss == nil || (ss.KeyInitSession && sender < recipient) { // create next session key var nextSenderSession uid.KeyEntry if err := nextSenderSession.InitDHKey(args.Rand); err != nil { return "", "", err } // store next session key err := addSessionKey(args.KeyStore, &nextSenderSession) if err != nil { return "", "", err } // if we already got h.NextSenderSessionPub prepare next session if h.NextSenderSessionPub != nil { previousRootKeyHash, err := args.KeyStore.GetRootKeyHash(sessionKey) if err != nil { return "", "", err } // root key agreement err = rootKeyAgreementSender(&senderHeaderPub, recipient, sender, &nextSenderSession, recipientID, h.NextSenderSessionPub, &h.SenderIdentityPub, previousRootKeyHash, args.NumOfKeys, args.KeyStore) if err != nil { return "", "", err } } // set session state ss = &session.State{ SenderSessionCount: 0, SenderMessageCount: 0, MaxRecipientCount: 0, RecipientTemp: h.SenderSessionPub, SenderSessionPub: *recipientKI, NextSenderSessionPub: &nextSenderSession, NextRecipientSessionPubSeen: h.NextSenderSessionPub, NymAddress: h.NymAddress, KeyInitSession: false, } err = args.KeyStore.SetSessionState(sessionStateKey, ss) if err != nil { return "", "", err } } } else { // no KeyInit message found // TODO: ??? } } else { // session known log.Debug("session known") // check if session state reflects that session if h.RecipientTempHash == ss.SenderSessionPub.HASH && h.SenderSessionPub.HASH == ss.RecipientTemp.HASH { log.Debug("session state reflects that session") if h.NextSenderSessionPub != nil { log.Debug("h.NextSenderSessionPub is defined") } if h.NextRecipientSessionPubSeen != nil { log.Debug("h.NextRecipientSessionPubSeen is defined") } if h.NextSenderSessionPub != nil { // if other side has set its NextSenderSessionPubKey we set // ours immediately if ss.NextSenderSessionPub == nil { // prepare upcoming session, but do not switch to it yet nextSenderSession, err := setNextSenderSessionPub(args.KeyStore, ss, sessionStateKey, args.Rand) if err != nil { return "", "", err } previousRootKeyHash, err := args.KeyStore.GetRootKeyHash(sessionKey) if err != nil { return "", "", err } // root key agreement err = rootKeyAgreementSender(&senderHeaderPub, recipient, sender, nextSenderSession, recipientID, h.NextSenderSessionPub, &h.SenderIdentityPub, previousRootKeyHash, args.NumOfKeys, args.KeyStore) if err != nil { return "", "", err } if ss.NextRecipientSessionPubSeen == nil { // save h.NextSenderSessionPub, if necessary ss.NextRecipientSessionPubSeen = h.NextSenderSessionPub err := args.KeyStore.SetSessionState(sessionStateKey, ss) if err != nil { return "", "", err } } } else if h.NextRecipientSessionPubSeen != nil && h.NextRecipientSessionPubSeen.HASH == ss.NextSenderSessionPub.HASH { // switch to next session nextSenderSession, err := getSessionKey(args.KeyStore, ss.NextSenderSessionPub.HASH) if err != nil { return "", "", err } previousRootKeyHash, err := args.KeyStore.GetRootKeyHash(sessionKey) if err != nil { return "", "", err } // root key agreement err = rootKeyAgreementRecipient(&senderHeaderPub, sender, recipient, h.NextSenderSessionPub, &h.SenderIdentityPub, nextSenderSession, recipientID, previousRootKeyHash, args.NumOfKeys, args.KeyStore) if err != nil { return "", "", err } // store new session state ss = &session.State{ SenderSessionCount: ss.SenderSessionCount + ss.SenderMessageCount, SenderMessageCount: 0, MaxRecipientCount: 0, RecipientTemp: *h.NextSenderSessionPub, SenderSessionPub: *nextSenderSession, NextSenderSessionPub: nil, NextRecipientSessionPubSeen: nil, NymAddress: h.NymAddress, KeyInitSession: false, } err = args.KeyStore.SetSessionState(sessionStateKey, ss) if err != nil { return "", "", err } } } } else { // check if session matches next session if ss.NextSenderSessionPub != nil && ss.NextRecipientSessionPubSeen != nil && ss.NextSenderSessionPub.HASH == h.RecipientTempHash && ss.NextRecipientSessionPubSeen.HASH == h.SenderSessionPub.HASH { // switch session ss = &session.State{ SenderSessionCount: ss.SenderSessionCount + ss.SenderMessageCount, SenderMessageCount: 0, MaxRecipientCount: 0, RecipientTemp: h.SenderSessionPub, SenderSessionPub: *ss.NextSenderSessionPub, NextSenderSessionPub: nil, NextRecipientSessionPubSeen: nil, NymAddress: h.NymAddress, KeyInitSession: false, } err = args.KeyStore.SetSessionState(sessionStateKey, ss) if err != nil { return "", "", err } } } // a message with this session key has been decrypted -> delete key if err := args.KeyStore.DelPrivSessionKey(h.RecipientTempHash); err != nil { return "", "", err } } // make sure we got enough message keys n, err := args.KeyStore.NumMessageKeys(sessionKey) if err != nil { return "", "", err } if h.SenderMessageCount >= n { // generate more message keys log.Debugf("generate more message keys (h.SenderMessageCount=%d, n=%d)", h.SenderMessageCount, n) chainKey, err := args.KeyStore.GetChainKey(sessionKey) if err != nil { return "", "", err } // prevent denial of service attack by very large h.SenderMessageCount numOfKeys := h.SenderMessageCount / args.NumOfKeys if h.SenderMessageCount%args.NumOfKeys > 0 { numOfKeys++ } numOfKeys *= args.NumOfKeys if numOfKeys > mime.MaxMsgSize/MaxContentLength+NumOfFutureKeys { return "", "", log.Errorf("msg: requested number of message keys too large") } log.Debugf("numOfKeys=%d", numOfKeys) var recipientPub *[32]byte if h.RecipientTempHash == ss.SenderSessionPub.HASH { recipientPub = ss.SenderSessionPub.PublicKey32() } else { log.Debug("different session") recipientKI, err := args.KeyStore.GetPrivateKeyEntry(h.RecipientTempHash) if err != nil && err != session.ErrNoKeyEntry { return "", "", err } if err != session.ErrNoKeyEntry { recipientPub = recipientKI.PublicKey32() } else { recipientKE, err := getSessionKey(args.KeyStore, h.RecipientTempHash) if err != nil { return "", "", err } recipientPub = recipientKE.PublicKey32() } } err = generateMessageKeys(sender, recipient, h.SenderIdentityPub.HASH, recipientID.HASH, chainKey, true, h.SenderSessionPub.PublicKey32(), recipientPub, numOfKeys, args.KeyStore) if err != nil { return "", "", err } } // get message key messageKey, err := args.KeyStore.GetMessageKey(sessionKey, false, h.SenderMessageCount) if err != nil { return "", "", err } // derive symmetric keys cryptoKey, hmacKey, err := deriveSymmetricKeys(messageKey) if err != nil { return "", "", err } // read crypto setup packet oh, err = readOuterHeader(args.Reader) if err != nil { return "", "", err } if oh.Type != cryptoSetup { return "", "", log.Error(ErrNotCryptoSetup) } if oh.PacketCount != count { return "", "", log.Error(ErrWrongCount) } count++ if oh.PLen != aes.BlockSize { return "", "", log.Error(ErrWrongCryptoSetup) } iv := oh.inner // start HMAC calculation mac := hmac.New(sha512.New, hmacKey) if err := oh.write(mac, true); err != nil { return "", "", err } // actual decryption oh, err = readOuterHeader(args.Reader) if err != nil { return "", "", err } if oh.Type != encryptedPacket { return "", "", log.Error(ErrNotEncryptedPacket) } if oh.PacketCount != count { return "", "", log.Error(ErrWrongCount) } count++ ciphertext := oh.inner plaintext := make([]byte, len(ciphertext)) stream := cipher.AES256CTRStream(cryptoKey, iv) stream.XORKeyStream(plaintext, ciphertext) ih, err := readInnerHeader(bytes.NewBuffer(plaintext)) if err != nil { return "", "", err } if ih.Type&dataType == 0 { return "", "", log.Error(ErrNotData) } var contentHash []byte if ih.Type&signType != 0 { // create signature hash contentHash = cipher.SHA512(ih.content) } if _, err := args.Writer.Write(ih.content); err != nil { return "", "", log.Error(err) } // continue HMAC calculation if err := oh.write(mac, true); err != nil { return "", "", err } // verify signature var sigBuf [ed25519.SignatureSize]byte if contentHash != nil { oh, err = readOuterHeader(args.Reader) if err != nil { return "", "", err } if oh.Type != encryptedPacket { return "", "", log.Error(ErrNotEncryptedPacket) } if oh.PacketCount != count { return "", "", log.Error(ErrWrongCount) } count++ // continue HMAC calculation if err := oh.write(mac, true); err != nil { return "", "", err } ciphertext = oh.inner plaintext = make([]byte, len(ciphertext)) stream.XORKeyStream(plaintext, ciphertext) ih, err = readInnerHeader(bytes.NewBuffer(plaintext)) if err != nil { return "", "", err } if ih.Type&signatureType == 0 { return "", "", log.Error(ErrNotSignaturePacket) } if len(ih.content) != ed25519.SignatureSize { return "", "", log.Error(ErrWrongSignatureLength) } copy(sigBuf[:], ih.content) } else { oh, err = readOuterHeader(args.Reader) if err != nil { return "", "", err } if oh.Type != encryptedPacket { return "", "", log.Error(ErrNotEncryptedPacket) } if oh.PacketCount != count { return "", "", log.Error(ErrWrongCount) } count++ // continue HMAC calculation if err := oh.write(mac, true); err != nil { return "", "", err } ciphertext = oh.inner plaintext = make([]byte, len(ciphertext)) stream.XORKeyStream(plaintext, ciphertext) ih, err = readInnerHeader(bytes.NewBuffer(plaintext)) if err != nil { return "", "", err } if ih.Type&paddingType == 0 { return "", "", log.Error(ErrNotPaddingPacket) } } // get processed sender UID uidRes := <-res if uidRes.err != nil { return "", "", uidRes.err } // verify signature, if necessary if contentHash != nil { if !ed25519.Verify(uidRes.msg.PublicSigKey32(), contentHash, &sigBuf) { return "", "", log.Error(ErrInvalidSignature) } // encode signature to base64 as return value sig = base64.Encode(sigBuf[:]) } // read HMAC packet oh, err = readOuterHeader(args.Reader) if err != nil { return "", "", err } if oh.Type != hmacPacket { return "", "", log.Error(ErrNotHMACPacket) } if oh.PacketCount != count { return "", "", log.Error(ErrWrongCount) } count++ if err := oh.write(mac, false); err != nil { return "", "", err } sum := mac.Sum(nil) log.Debugf("HMAC: %s", base64.Encode(sum)) if !hmac.Equal(sum, oh.inner) { return "", "", log.Error(ErrHMACsDiffer) } // delete message key err = args.KeyStore.DelMessageKey(sessionKey, false, h.SenderMessageCount) if err != nil { return "", "", err } return }
func (pe *ProtoEngine) fetch( output io.Writer, status io.Writer, server string, lastMessageTime int64, command io.Reader, ) error { // read passphrase log.Infof("read private key from fd %d", pe.fileTable.PassphraseFD) pks, err := util.Readline(pe.fileTable.PassphraseFP) if err != nil { return err } log.Info("done") pk, err := base64.Decode(string(pks)) if err != nil { return log.Error(err) } var privkey [ed25519.PrivateKeySize]byte copy(privkey[:], pk) log.Debugf("lastMessageTime=%d", lastMessageTime) messages, err := client.ListMessages(&privkey, lastMessageTime, server, def.CACert) if err != nil { // TODO: handle this better if err.Error() == "accountdb: Nothing found" { // no messages found log.Info("write: NONE") fmt.Fprintln(status, "NONE") return nil } return log.Error(err) } /* for _, message := range messages { messageID := base64.Encode(message.MessageID) log.Debugf("messageID=%s, ReceiveTime=%d, ReadTime=%d", messageID, message.ReceiveTime, message.ReadTime) } */ scanner := bufio.NewScanner(command) for _, message := range messages { msg, err := client.FetchMessage(&privkey, message.MessageID, server, def.CACert) if err != nil { return log.Error(err) } messageID := base64.Encode(message.MessageID) log.Debugf("write: MESSAGEID:\t%s", messageID) fmt.Fprintf(status, "MESSAGEID:\t%s\n", messageID) var command string if scanner.Scan() { command = scanner.Text() } else { return log.Error("protoengine: expecting command input") } if err := scanner.Err(); err != nil { fmt.Fprintln(os.Stderr, "reading standard input:", err) } if command == "NEXT" { log.Debug("read: NEXT") enc := base64.Encode(msg) if _, err := io.WriteString(output, enc); err != nil { return log.Error(err) } log.Debugf("write: LENGTH:\t%d", len(enc)) fmt.Fprintf(status, "LENGTH:\t%d\n", len(enc)) log.Debugf("write: RECEIVETIME:\t%d", message.ReceiveTime) fmt.Fprintf(status, "RECEIVETIME:\t%d\n", message.ReceiveTime) } else if command == "QUIT" { log.Debug("read: QUIT") return nil } else { return log.Errorf("protoengine: unknown command '%s'", command) } } // no more messages log.Info("write: NONE") fmt.Fprintln(status, "NONE") return nil }
// Encrypt encrypts a message with the argument given in args and returns the // nymAddress the message should be delivered to. func Encrypt(args *EncryptArgs) (nymAddress string, err error) { log.Debugf("msg.Encrypt(): %s -> %s", args.From.Identity(), args.To.Identity()) // set defaults if args.NumOfKeys == 0 { args.NumOfKeys = NumOfFutureKeys } if args.AvgSessionSize == 0 { args.AvgSessionSize = AverageSessionSize } // create sender key senderHeaderKey, err := cipher.Curve25519Generate(cipher.RandReader) if err != nil { return "", log.Error(err) } // create pre-header ph := newPreHeader(senderHeaderKey.PublicKey()[:]) // create base64 encoder var out bytes.Buffer wc := base64.NewEncoder(&out) // write pre-header var buf bytes.Buffer var count uint32 if err := ph.write(&buf); err != nil { return "", err } oh := newOuterHeader(preHeaderPacket, count, buf.Bytes()) if err := oh.write(wc, true); err != nil { return "", err } count++ // get session state sender := args.From.Identity() recipient := args.To.Identity() sessionStateKey := session.CalcStateKey(args.From.PubKey().PublicKey32(), args.To.PubKey().PublicKey32()) var ss *session.State if args.StatusCode != StatusReset { ss, err = args.KeyStore.GetSessionState(sessionStateKey) if err != nil { return "", err } } if ss == nil { // no session found -> start first session log.Debug("no session found -> start first session") var recipientTemp *uid.KeyEntry recipientTemp, nymAddress, err = args.KeyStore.GetPublicKeyEntry(args.To) if err != nil { return "", err } // create session key var senderSession uid.KeyEntry if err := senderSession.InitDHKey(args.Rand); err != nil { return "", err } // store session key if err := addSessionKey(args.KeyStore, &senderSession); err != nil { return "", err } // root key agreement err = rootKeyAgreementSender(senderHeaderKey.PublicKey(), args.From.Identity(), args.To.Identity(), &senderSession, args.From.PubKey(), recipientTemp, args.To.PubKey(), nil, args.NumOfKeys, args.KeyStore) if err != nil { return "", err } // set session state ss = &session.State{ SenderSessionCount: 0, SenderMessageCount: 0, MaxRecipientCount: 0, RecipientTemp: *recipientTemp, SenderSessionPub: senderSession, NextSenderSessionPub: nil, NextRecipientSessionPubSeen: nil, NymAddress: nymAddress, KeyInitSession: true, } log.Debugf("set session: %s", ss.SenderSessionPub.HASH) err = args.KeyStore.SetSessionState(sessionStateKey, ss) if err != nil { return "", err } } else if args.StatusCode != StatusError { // do not update sessions for StatusError messages log.Debug("session found") log.Debugf("got session: %s", ss.SenderSessionPub.HASH) nymAddress = ss.NymAddress if ss.NextSenderSessionPub == nil { // start new session in randomized fashion n, err := rand.Int(cipher.RandReader, big.NewInt(int64(args.AvgSessionSize))) if err != nil { return "", err } if n.Int64() == 0 { _, err := setNextSenderSessionPub(args.KeyStore, ss, sessionStateKey, args.Rand) if err != nil { return "", err } } } } // create header log.Debugf("senderID: %s", args.From.UIDContent.PUBKEYS[0].HASH) log.Debugf("recipientID: %s", args.To.UIDContent.PUBKEYS[0].HASH) log.Debugf("ss.SenderSessionCount: %d", ss.SenderSessionCount) log.Debugf("ss.SenderMessageCount: %d", ss.SenderMessageCount) log.Debugf("ss.RecipientTempHash: %s", ss.RecipientTemp.HASH) h, err := newHeader(args.From, args.To, ss.RecipientTemp.HASH, &ss.SenderSessionPub, ss.NextSenderSessionPub, ss.NextRecipientSessionPubSeen, args.NymAddress, ss.SenderSessionCount, ss.SenderMessageCount, args.SenderLastKeychainHash, args.Rand, args.StatusCode) if err != nil { return "", err } log.Debugf("h.SenderSessionPub: %s", h.SenderSessionPub.HASH) if h.NextSenderSessionPub != nil { log.Debugf("h.NextSenderSessionPub: %s", h.NextSenderSessionPub.HASH) } if h.NextRecipientSessionPubSeen != nil { log.Debugf("h.NextRecipientSessionPubSeen: %s", h.NextRecipientSessionPubSeen.HASH) } // create (encrypted) header packet recipientIdentityPub, err := args.To.PublicKey() if err != nil { return "", err } hp, err := newHeaderPacket(h, recipientIdentityPub, senderHeaderKey.PrivateKey(), args.Rand) if err != nil { return "", err } // write (encrypted) header packet buf.Reset() if err := hp.write(&buf); err != nil { return "", err } oh = newOuterHeader(encryptedHeader, count, buf.Bytes()) if err := oh.write(wc, true); err != nil { return "", err } count++ sessionKey := session.CalcKey(args.From.PubKey().HASH, args.To.PubKey().HASH, ss.SenderSessionPub.HASH, ss.RecipientTemp.HASH) // make sure we got enough message keys n, err := args.KeyStore.NumMessageKeys(sessionKey) if err != nil { return "", err } if ss.SenderMessageCount >= n { // generate more message keys log.Debugf("generate more message keys (ss.SenderMessageCount=%d)", ss.SenderMessageCount) chainKey, err := args.KeyStore.GetChainKey(sessionKey) if err != nil { return "", err } err = generateMessageKeys(sender, recipient, args.From.PubKey().HASH, args.To.PubKey().HASH, chainKey, false, ss.SenderSessionPub.PublicKey32(), ss.RecipientTemp.PublicKey32(), args.NumOfKeys, args.KeyStore) if err != nil { return "", err } } // get message key messageKey, err := args.KeyStore.GetMessageKey(sessionKey, true, ss.SenderMessageCount) if err != nil { return "", err } // derive symmetric keys cryptoKey, hmacKey, err := deriveSymmetricKeys(messageKey) if err != nil { return "", err } // write crypto setup packet iv := make([]byte, aes.BlockSize) if _, err := io.ReadFull(args.Rand, iv); err != nil { return "", log.Error(err) } oh = newOuterHeader(cryptoSetup, count, iv) if err := oh.write(wc, true); err != nil { return "", err } count++ // start HMAC calculation mac := hmac.New(sha512.New, hmacKey) if err := oh.write(mac, true); err != nil { return "", err } // actual encryption var content []byte if args.StatusCode == StatusOK { // StatusReset and StatusError messages are empty content, err = ioutil.ReadAll(args.Reader) if err != nil { return "", log.Error(err) } } // enforce maximum content length if len(content) > MaxContentLength { return "", log.Errorf("len(content) = %d > %d = MaxContentLength)", len(content), MaxContentLength) } // encrypted packet var contentHash []byte var innerType uint8 if args.PrivateSigKey != nil { contentHash = cipher.SHA512(content) innerType = dataType | signType } else { innerType = dataType } ih := newInnerHeader(innerType, false, content) buf.Reset() if err := ih.write(&buf); err != nil { return "", err } stream := cipher.AES256CTRStream(cryptoKey, iv) stream.XORKeyStream(buf.Bytes(), buf.Bytes()) oh = newOuterHeader(encryptedPacket, count, buf.Bytes()) if err := oh.write(wc, true); err != nil { return "", err } count++ // continue HMAC calculation if err := oh.write(mac, true); err != nil { return "", err } // signature header & padding buf.Reset() if args.PrivateSigKey != nil { sig := ed25519.Sign(args.PrivateSigKey, contentHash) // signature ih = newInnerHeader(signatureType, true, sig[:]) if err := ih.write(&buf); err != nil { return "", err } // padding padLen := MaxContentLength - len(content) pad, err := padding.Generate(padLen, cipher.RandReader) if err != nil { return "", err } ih = newInnerHeader(paddingType, false, pad) if err := ih.write(&buf); err != nil { return "", err } } else { // just padding padLen := MaxContentLength + signatureSize - encryptedPacketSize + innerHeaderSize - len(content) pad, err := padding.Generate(padLen, cipher.RandReader) if err != nil { return "", err } ih = newInnerHeader(paddingType, false, pad) if err := ih.write(&buf); err != nil { return "", err } } // encrypt inner header stream.XORKeyStream(buf.Bytes(), buf.Bytes()) oh = newOuterHeader(encryptedPacket, count, buf.Bytes()) if err := oh.write(wc, true); err != nil { return "", err } count++ // continue HMAC calculation if err := oh.write(mac, true); err != nil { return "", err } // create HMAC header oh = newOuterHeader(hmacPacket, count, nil) oh.PLen = sha512.Size if err := oh.write(mac, false); err != nil { return "", err } oh.inner = mac.Sum(oh.inner) log.Debugf("HMAC: %s", base64.Encode(oh.inner)) if err := oh.write(wc, true); err != nil { return "", err } count++ // write output wc.Close() if out.Len() != EncodedMsgSize { return "", log.Errorf("out.Len() = %d != %d = EncodedMsgSize)", out.Len(), EncodedMsgSize) } if _, err := io.Copy(args.Writer, &out); err != nil { return "", log.Error(err) } // delete message key err = args.KeyStore.DelMessageKey(sessionKey, true, ss.SenderMessageCount) if err != nil { return "", err } // increase SenderMessageCount ss.SenderMessageCount++ err = args.KeyStore.SetSessionState(sessionStateKey, ss) if err != nil { return "", err } return }