// Decode implements the Decoder interface. func (d *protoDecoder) Decode(v *dto.MetricFamily) error { _, err := pbutil.ReadDelimited(d.r, v) if err != nil { return err } if !model.IsValidMetricName(model.LabelValue(v.GetName())) { return fmt.Errorf("invalid metric name %q", v.GetName()) } for _, m := range v.GetMetric() { if m == nil { continue } for _, l := range m.GetLabel() { if l == nil { continue } if !model.LabelValue(l.GetValue()).IsValid() { return fmt.Errorf("invalid label value %q", l.GetValue()) } if !model.LabelName(l.GetName()).IsValid() { return fmt.Errorf("invalid label name %q", l.GetName()) } } } return nil }
// NewDesc allocates and initializes a new Desc. Errors are recorded in the Desc // and will be reported on registration time. variableLabels and constLabels can // be nil if no such labels should be set. fqName and help must not be empty. // // variableLabels only contain the label names. Their label values are variable // and therefore not part of the Desc. (They are managed within the Metric.) // // For constLabels, the label values are constant. Therefore, they are fully // specified in the Desc. See the Opts documentation for the implications of // constant labels. func NewDesc(fqName, help string, variableLabels []string, constLabels Labels) *Desc { d := &Desc{ fqName: fqName, help: help, variableLabels: variableLabels, } if help == "" { d.err = errors.New("empty help string") return d } if !model.IsValidMetricName(model.LabelValue(fqName)) { d.err = fmt.Errorf("%q is not a valid metric name", fqName) return d } // labelValues contains the label values of const labels (in order of // their sorted label names) plus the fqName (at position 0). labelValues := make([]string, 1, len(constLabels)+1) labelValues[0] = fqName labelNames := make([]string, 0, len(constLabels)+len(variableLabels)) labelNameSet := map[string]struct{}{} // First add only the const label names and sort them... for labelName := range constLabels { if !checkLabelName(labelName) { d.err = fmt.Errorf("%q is not a valid label name", labelName) return d } labelNames = append(labelNames, labelName) labelNameSet[labelName] = struct{}{} } sort.Strings(labelNames) // ... so that we can now add const label values in the order of their names. for _, labelName := range labelNames { labelValues = append(labelValues, constLabels[labelName]) } // Now add the variable label names, but prefix them with something that // cannot be in a regular label name. That prevents matching the label // dimension with a different mix between preset and variable labels. for _, labelName := range variableLabels { if !checkLabelName(labelName) { d.err = fmt.Errorf("%q is not a valid label name", labelName) return d } labelNames = append(labelNames, "$"+labelName) labelNameSet[labelName] = struct{}{} } if len(labelNames) != len(labelNameSet) { d.err = errors.New("duplicate label names") return d } vh := hashNew() for _, val := range labelValues { vh = hashAdd(vh, val) vh = hashAddByte(vh, separatorByte) } d.id = vh // Sort labelNames so that order doesn't matter for the hash. sort.Strings(labelNames) // Now hash together (in this order) the help string and the sorted // label names. lh := hashNew() lh = hashAdd(lh, help) lh = hashAddByte(lh, separatorByte) for _, labelName := range labelNames { lh = hashAdd(lh, labelName) lh = hashAddByte(lh, separatorByte) } d.dimHash = lh d.constLabelPairs = make([]*dto.LabelPair, 0, len(constLabels)) for n, v := range constLabels { d.constLabelPairs = append(d.constLabelPairs, &dto.LabelPair{ Name: proto.String(n), Value: proto.String(v), }) } sort.Sort(LabelPairSorter(d.constLabelPairs)) return d }