// Example_groupedHorizontalBoxPlots draws vertical boxplots. func Example_groupedHorizontalBoxPlots() *plot.Plot { rand.Seed(int64(0)) n := 100 uniform := make(plotter.Values, n) normal := make(plotter.Values, n) expon := make(plotter.Values, n) for i := 0; i < n; i++ { uniform[i] = rand.Float64() normal[i] = rand.NormFloat64() expon[i] = rand.ExpFloat64() } p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Box Plot" p.Y.Label.Text = "plotter.Values" w := vg.Points(20) for y := 0.0; y < 3.0; y++ { b0 := must(plotter.MakeHorizBoxPlot(w, y, uniform)).(plotter.HorizBoxPlot) b0.Offset = -w - vg.Points(3) b1 := must(plotter.MakeHorizBoxPlot(w, y, normal)).(plotter.HorizBoxPlot) b2 := must(plotter.MakeHorizBoxPlot(w, y, expon)).(plotter.HorizBoxPlot) b2.Offset = w + vg.Points(3) p.Add(b0, b1, b2) } p.NominalY("Group 0", "Group 1", "Group 2") return p }
// Example_groupedBoxPlots draws vertical boxplots. func Example_groupedBoxPlots() *plot.Plot { rand.Seed(int64(0)) n := 100 uniform := make(plotter.Values, n) normal := make(plotter.Values, n) expon := make(plotter.Values, n) for i := 0; i < n; i++ { uniform[i] = rand.Float64() normal[i] = rand.NormFloat64() expon[i] = rand.ExpFloat64() } p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Box Plot" p.Y.Label.Text = "plotter.Values" w := vg.Points(20) for x := 0.0; x < 3.0; x++ { b0 := must(plotter.NewBoxPlot(w, x, uniform)).(*plotter.BoxPlot) b0.Offset = -w - vg.Points(3) b1 := must(plotter.NewBoxPlot(w, x, normal)).(*plotter.BoxPlot) b2 := must(plotter.NewBoxPlot(w, x, expon)).(*plotter.BoxPlot) b2.Offset = w + vg.Points(3) p.Add(b0, b1, b2) } // Set the X axis of the plot to nominal with // the given names for x=0, x=1 and x=2. p.NominalX("Group 0", "Group 1", "Group 2") return p }
// Draw the plotinum logo. func Example_logo() *plot.Plot { p, err := plot.New() if err != nil { panic(err) } plotter.DefaultLineStyle.Width = vg.Points(1) plotter.DefaultGlyphStyle.Radius = vg.Points(3) p.Y.Tick.Marker = plot.ConstantTicks([]plot.Tick{ {0, "0"}, {0.25, ""}, {0.5, "0.5"}, {0.75, ""}, {1, "1"}, }) p.X.Tick.Marker = plot.ConstantTicks([]plot.Tick{ {0, "0"}, {0.25, ""}, {0.5, "0.5"}, {0.75, ""}, {1, "1"}, }) pts := plotter.XYs{{0, 0}, {0, 1}, {0.5, 1}, {0.5, 0.6}, {0, 0.6}} line := must(plotter.NewLine(pts)).(*plotter.Line) scatter := must(plotter.NewScatter(pts)).(*plotter.Scatter) p.Add(line, scatter) pts = plotter.XYs{{1, 0}, {0.75, 0}, {0.75, 0.75}} line = must(plotter.NewLine(pts)).(*plotter.Line) scatter = must(plotter.NewScatter(pts)).(*plotter.Scatter) p.Add(line, scatter) pts = plotter.XYs{{0.5, 0.5}, {1, 0.5}} line = must(plotter.NewLine(pts)).(*plotter.Line) scatter = must(plotter.NewScatter(pts)).(*plotter.Scatter) p.Add(line, scatter) return p }
// NewBoxPlot returns a new BoxPlot that represents // the distribution of the given values. The style of // the box plot is that used for Tukey's schematic // plots is ``Exploratory Data Analysis.'' // // An error is returned if the boxplot is created with // no values. // // The fence values are 1.5x the interquartile before // the first quartile and after the third quartile. Any // value that is outside of the fences are drawn as // Outside points. The adjacent values (to which the // whiskers stretch) are the minimum and maximum // values that are not outside the fences. func NewBoxPlot(w vg.Length, loc float64, values Valuer) (*BoxPlot, error) { if w < 0 { return nil, errors.New("Negative boxplot width") } b := new(BoxPlot) var err error if b.fiveStatPlot, err = newFiveStat(w, loc, values); err != nil { return nil, err } b.Width = w b.CapWidth = 3 * w / 4 b.GlyphStyle = DefaultGlyphStyle b.BoxStyle = DefaultLineStyle b.MedianStyle = DefaultLineStyle b.WhiskerStyle = draw.LineStyle{ Width: vg.Points(0.5), Dashes: []vg.Length{vg.Points(4), vg.Points(2)}, } if len(b.Values) == 0 { b.Width = 0 b.GlyphStyle.Radius = 0 b.BoxStyle.Width = 0 b.MedianStyle.Width = 0 b.WhiskerStyle.Width = 0 } return b, nil }
// Example_boxPlots draws vertical boxplots. func Example_boxPlots() *plot.Plot { rand.Seed(int64(0)) n := 100 uniform := make(plotter.Values, n) normal := make(plotter.Values, n) expon := make(plotter.Values, n) for i := 0; i < n; i++ { uniform[i] = rand.Float64() normal[i] = rand.NormFloat64() expon[i] = rand.ExpFloat64() } p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Box Plot" p.Y.Label.Text = "plotter.Values" // Make boxes for our data and add them to the plot. p.Add(must(plotter.NewBoxPlot(vg.Points(20), 0, uniform)).(*plotter.BoxPlot), must(plotter.NewBoxPlot(vg.Points(20), 1, normal)).(*plotter.BoxPlot), must(plotter.NewBoxPlot(vg.Points(20), 2, expon)).(*plotter.BoxPlot)) // Set the X axis of the plot to nominal with // the given names for x=0, x=1 and x=2. p.NominalX("Uniform\nDistribution", "Normal\nDistribution", "Exponential\nDistribution") return p }
// makeLegend returns a legend with the default // parameter settings. func makeLegend() (Legend, error) { font, err := vg.MakeFont(DefaultFont, vg.Points(12)) if err != nil { return Legend{}, err } return Legend{ ThumbnailWidth: vg.Points(20), TextStyle: draw.TextStyle{Font: font}, }, nil }
// Example_horizontalBoxPlots draws horizontal boxplots // with some labels on their points. func Example_horizontalBoxPlots() *plot.Plot { rand.Seed(int64(0)) n := 100 uniform := make(valueLabels, n) normal := make(valueLabels, n) expon := make(valueLabels, n) for i := 0; i < n; i++ { uniform[i].Value = rand.Float64() uniform[i].Label = fmt.Sprintf("%4.4f", uniform[i].Value) normal[i].Value = rand.NormFloat64() normal[i].Label = fmt.Sprintf("%4.4f", normal[i].Value) expon[i].Value = rand.ExpFloat64() expon[i].Label = fmt.Sprintf("%4.4f", expon[i].Value) } p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Horizontal Box Plot" p.X.Label.Text = "plotter.Values" // Make boxes for our data and add them to the plot. uniBox := must(plotter.MakeHorizBoxPlot(vg.Points(20), 0, uniform)).(plotter.HorizBoxPlot) uniLabels, err := uniBox.OutsideLabels(uniform) if err != nil { panic(err) } normBox := must(plotter.MakeHorizBoxPlot(vg.Points(20), 1, normal)).(plotter.HorizBoxPlot) normLabels, err := normBox.OutsideLabels(normal) if err != nil { panic(err) } expBox := must(plotter.MakeHorizBoxPlot(vg.Points(20), 2, expon)).(plotter.HorizBoxPlot) expLabels, err := expBox.OutsideLabels(expon) if err != nil { panic(err) } p.Add(uniBox, uniLabels, normBox, normLabels, expBox, expLabels) // Add a GlyphBox plotter for debugging. p.Add(plotter.NewGlyphBoxes()) // Set the Y axis of the plot to nominal with // the given names for y=0, y=1 and y=2. p.NominalY("Uniform\nDistribution", "Normal\nDistribution", "Exponential\nDistribution") return p }
func main() { var levels []float64 for l := 100.5; l < volcano.Matrix.(*mat64.Dense).Max(); l += 5 { levels = append(levels, l) } c := plotter.NewContour(volcano, levels, palette.Rainbow(len(levels), (palette.Yellow+palette.Red)/2, palette.Blue, 1, 1, 1)) quarterStyle := draw.LineStyle{ Color: color.Black, Width: vg.Points(0.5), Dashes: []vg.Length{0.2, 0.4}, } halfStyle := draw.LineStyle{ Color: color.Black, Width: vg.Points(0.5), Dashes: []vg.Length{5, 2, 1, 2}, } c.LineStyles = append(c.LineStyles, quarterStyle, halfStyle, quarterStyle) h := plotter.NewHeatMap(volcano, palette.Heat(len(levels)*2, 1)) p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Maunga Whau Volcano" p.Add(h) p.Add(c) p.X.Padding = 0 p.Y.Padding = 0 _, p.X.Max, _, p.Y.Max = h.DataRange() name := "example_volcano" for _, ext := range []string{ ".eps", ".pdf", ".svg", ".png", ".tiff", ".jpg", } { if err := p.Save(4, 4, name+ext); err != nil { panic(err) } } }
func Example_groupedQuartPlots() *plot.Plot { rand.Seed(int64(0)) n := 100 uniform := make(plotter.Values, n) normal := make(plotter.Values, n) expon := make(plotter.Values, n) for i := 0; i < n; i++ { uniform[i] = rand.Float64() normal[i] = rand.NormFloat64() expon[i] = rand.ExpFloat64() } p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Box Plot" p.Y.Label.Text = "plotter.Values" w := vg.Points(10) for x := 0.0; x < 3.0; x++ { b0 := must(plotter.NewQuartPlot(x, uniform)).(*plotter.QuartPlot) b0.Offset = -w b1 := must(plotter.NewQuartPlot(x, normal)).(*plotter.QuartPlot) b2 := must(plotter.NewQuartPlot(x, expon)).(*plotter.QuartPlot) b2.Offset = w p.Add(b0, b1, b2) } p.Add(plotter.NewGlyphBoxes()) p.NominalX("Group 0", "Group 1", "Group 2") return p }
// An example of making a histogram. func Example_histogram() *plot.Plot { rand.Seed(int64(0)) n := 10000 vals := make(plotter.Values, n) for i := 0; i < n; i++ { vals[i] = rand.NormFloat64() } p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Histogram" h, err := plotter.NewHist(vals, 16) if err != nil { panic(err) } h.Normalize(1) p.Add(h) // The normal distribution function norm := plotter.NewFunction(stdNorm) norm.Color = color.RGBA{R: 255, A: 255} norm.Width = vg.Points(2) p.Add(norm) return p }
// DrawGlyph implements the Glyph interface. func (RingGlyph) DrawGlyph(c *Canvas, sty GlyphStyle, pt Point) { c.SetLineStyle(LineStyle{Color: sty.Color, Width: vg.Points(0.5)}) var p vg.Path p.Move(pt.X+sty.Radius, pt.Y) p.Arc(pt.X, pt.Y, sty.Radius, 0, 2*math.Pi) p.Close() c.Stroke(p) }
// DrawGlyph implements the Glyph interface. func (TriangleGlyph) DrawGlyph(c *Canvas, sty GlyphStyle, pt Point) { c.SetLineStyle(LineStyle{Color: sty.Color, Width: vg.Points(0.5)}) r := sty.Radius + (sty.Radius-sty.Radius*sinπover6)/2 var p vg.Path p.Move(pt.X, pt.Y+r) p.Line(pt.X-r*cosπover6, pt.Y-r*sinπover6) p.Line(pt.X+r*cosπover6, pt.Y-r*sinπover6) p.Close() c.Stroke(p) }
// DrawGlyph implements the Glyph interface. func (SquareGlyph) DrawGlyph(c *Canvas, sty GlyphStyle, pt Point) { c.SetLineStyle(LineStyle{Color: sty.Color, Width: vg.Points(0.5)}) x := (sty.Radius-sty.Radius*cosπover4)/2 + sty.Radius*cosπover4 var p vg.Path p.Move(pt.X-x, pt.Y-x) p.Line(pt.X+x, pt.Y-x) p.Line(pt.X+x, pt.Y+x) p.Line(pt.X-x, pt.Y+x) p.Close() c.Stroke(p) }
// Example_points draws some scatter points, a line, // and a line with points. func Example_points() *plot.Plot { rand.Seed(int64(0)) n := 15 scatterData := randomPoints(n) lineData := randomPoints(n) linePointsData := randomPoints(n) p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Points Example" p.X.Label.Text = "X" p.Y.Label.Text = "Y" p.Add(plotter.NewGrid()) s := must(plotter.NewScatter(scatterData)).(*plotter.Scatter) s.GlyphStyle.Color = color.RGBA{R: 255, B: 128, A: 255} s.GlyphStyle.Radius = vg.Points(3) l := must(plotter.NewLine(lineData)).(*plotter.Line) l.LineStyle.Width = vg.Points(1) l.LineStyle.Dashes = []vg.Length{vg.Points(5), vg.Points(5)} l.LineStyle.Color = color.RGBA{B: 255, A: 255} lpLine, lpPoints, err := plotter.NewLinePoints(linePointsData) if err != nil { panic(err) } lpLine.Color = color.RGBA{G: 255, A: 255} lpPoints.Shape = draw.CircleGlyph{} lpPoints.Color = color.RGBA{R: 255, A: 255} p.Add(s, l, lpLine, lpPoints) p.Legend.Add("scatter", s) p.Legend.Add("line", l) p.Legend.Add("line points", lpLine, lpPoints) return p }
// DrawGlyph implements the Glyph interface. func (CrossGlyph) DrawGlyph(c *Canvas, sty GlyphStyle, pt Point) { c.SetLineStyle(LineStyle{Color: sty.Color, Width: vg.Points(0.5)}) r := sty.Radius * cosπover4 var p vg.Path p.Move(pt.X-r, pt.Y-r) p.Line(pt.X+r, pt.Y+r) c.Stroke(p) p = vg.Path{} p.Move(pt.X-r, pt.Y+r) p.Line(pt.X+r, pt.Y-r) c.Stroke(p) }
// Example_functions draws some functions. func Example_functions() *plot.Plot { p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Functions" p.X.Label.Text = "X" p.Y.Label.Text = "Y" quad := plotter.NewFunction(func(x float64) float64 { return x * x }) quad.Color = color.RGBA{B: 255, A: 255} exp := plotter.NewFunction(func(x float64) float64 { return math.Pow(2, x) }) exp.Dashes = []vg.Length{vg.Points(2), vg.Points(2)} exp.Width = vg.Points(2) exp.Color = color.RGBA{G: 255, A: 255} sin := plotter.NewFunction(func(x float64) float64 { return 10*math.Sin(x) + 50 }) sin.Dashes = []vg.Length{vg.Points(4), vg.Points(5)} sin.Width = vg.Points(4) sin.Color = color.RGBA{R: 255, A: 255} p.Add(quad, exp, sin) p.Legend.Add("x^2", quad) p.Legend.Add("2^x", exp) p.Legend.Add("10*sin(x)+50", sin) p.Legend.ThumbnailWidth = 0.5 * vg.Inch p.X.Min = 0 p.X.Max = 10 p.Y.Min = 0 p.Y.Max = 100 return p }
func Example_bubbles() *plot.Plot { rand.Seed(int64(0)) n := 10 bubbleData := randomTriples(n) p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Bubbles" p.X.Label.Text = "X" p.Y.Label.Text = "Y" bs, err := plotter.NewBubbles(bubbleData, vg.Points(1), vg.Points(20)) if err != nil { panic(err) } bs.Color = color.RGBA{R: 196, B: 128, A: 255} p.Add(bs) return p }
// AddStackedAreaPlots adds stacked area plot plotters to a plot. // The variadic arguments must be either strings // or plotter.Valuers. Each valuer adds a stacked area // plot to the plot below the stacked area plots added // before it. If a plotter.Valuer is immediately // preceeded by a string then the string value is used to // label the legend. // Plots should be added in order of tallest to shortest, // because they will be drawn in the order they are added // (i.e. later plots will be painted over earlier plots). // // If an error occurs then none of the plotters are added // to the plot, and the error is returned. func AddStackedAreaPlots(plt *plot.Plot, xs plotter.Valuer, vs ...interface{}) error { var ps []plot.Plotter names := make(map[*plotter.Line]string) name := "" var i int for _, v := range vs { switch t := v.(type) { case string: name = t case plotter.Valuer: if xs.Len() != t.Len() { return errors.New("X/Y length mismatch") } // Make a line plotter and set its style. l, err := plotter.NewLine(combineXYs{xs: xs, ys: t}) if err != nil { return err } l.LineStyle.Width = vg.Points(0) color := Color(i) i++ l.ShadeColor = &color ps = append(ps, l) if name != "" { names[l] = name name = "" } default: panic(fmt.Sprintf("AddStackedAreaPlots handles strings and plotter.Valuers, got %T", t)) } } plt.Add(ps...) for p, n := range names { plt.Legend.Add(n, p) } return nil }
// An example of making a bar chart. func Example_barChart() *plot.Plot { groupA := plotter.Values{20, 35, 30, 35, 27} groupB := plotter.Values{25, 32, 34, 20, 25} groupC := plotter.Values{12, 28, 15, 21, 8} groupD := plotter.Values{30, 42, 6, 9, 12} p, err := plot.New() if err != nil { panic(err) } p.Title.Text = "Bar chart" p.Y.Label.Text = "Heights" w := vg.Points(8) barsA := must(plotter.NewBarChart(groupA, w)).(*plotter.BarChart) barsA.Color = color.RGBA{R: 255, A: 255} barsA.Offset = -w / 2 barsB := must(plotter.NewBarChart(groupB, w)).(*plotter.BarChart) barsB.Color = color.RGBA{R: 196, G: 196, A: 255} barsB.Offset = w / 2 barsC := must(plotter.NewBarChart(groupC, w)).(*plotter.BarChart) barsC.Color = color.RGBA{B: 255, A: 255} barsC.XMin = 6 barsC.Offset = -w / 2 barsD := must(plotter.NewBarChart(groupD, w)).(*plotter.BarChart) barsD.Color = color.RGBA{B: 255, R: 255, A: 255} barsD.XMin = 6 barsD.Offset = w / 2 p.Add(barsA, barsB, barsC, barsD) p.Legend.Add("A", barsA) p.Legend.Add("B", barsB) p.Legend.Add("C", barsC) p.Legend.Add("D", barsD) p.Legend.Top = true p.NominalX("Zero", "One", "Two", "Three", "Four", "", "Six", "Seven", "Eight", "Nine", "Ten") return p }
// makeAxis returns a default Axis. // // The default range is (∞, ∞), and thus any finite // value is less than Min and greater than Max. func makeAxis() (Axis, error) { labelFont, err := vg.MakeFont(DefaultFont, vg.Points(12)) if err != nil { return Axis{}, err } tickFont, err := vg.MakeFont(DefaultFont, vg.Points(10)) if err != nil { return Axis{}, err } a := Axis{ Min: math.Inf(1), Max: math.Inf(-1), LineStyle: draw.LineStyle{ Color: color.Black, Width: vg.Points(0.5), }, Padding: vg.Points(5), Scale: LinearScale{}, } a.Label.TextStyle = draw.TextStyle{ Color: color.Black, Font: labelFont, } a.Tick.Label = draw.TextStyle{ Color: color.Black, Font: tickFont, } a.Tick.LineStyle = draw.LineStyle{ Color: color.Black, Width: vg.Points(0.5), } a.Tick.Length = vg.Points(8) a.Tick.Marker = DefaultTicks{} return a, nil }
func NewGlyphBoxes() *GlyphBoxes { g := new(GlyphBoxes) g.Color = color.RGBA{R: 255, A: 255} g.Width = vg.Points(0.25) return g }
// Copyright ©2015 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package plotter import ( "math" "github.com/sksullivan/plot" "github.com/sksullivan/plot/vg" "github.com/sksullivan/plot/vg/draw" ) // DefaultCapWidth is the default width of error bar caps. var DefaultCapWidth = vg.Points(5) // YErrorBars implements the plot.Plotter, plot.DataRanger, // and plot.GlyphBoxer interfaces, drawing vertical error // bars, denoting error in Y values. type YErrorBars struct { XYs // YErrors is a copy of the Y errors for each point. YErrors // LineStyle is the style used to draw the error bars. draw.LineStyle // CapWidth is the width of the caps drawn at the top // of each error bar.
package plotter import ( "image/color" "github.com/sksullivan/plot" "github.com/sksullivan/plot/vg" "github.com/sksullivan/plot/vg/draw" ) var ( // DefaultQuartMedianStyle is a fat dot. DefaultQuartMedianStyle = draw.GlyphStyle{ Color: color.Black, Radius: vg.Points(1.5), Shape: draw.CircleGlyph{}, } // DefaultQuartWhiskerStyle is a hairline. DefaultQuartWhiskerStyle = draw.LineStyle{ Color: color.Black, Width: vg.Points(0.5), Dashes: []vg.Length{}, DashOffs: 0, } ) // QuartPlot implements the Plotter interface, drawing // a plot to represent the distribution of values. //
package plotter import ( "errors" "github.com/sksullivan/plot" "github.com/sksullivan/plot/vg" "github.com/sksullivan/plot/vg/draw" ) var ( // DefaultFont is the default font for label text. DefaultFont = plot.DefaultFont // DefaultFontSize is the default font. DefaultFontSize = vg.Points(10) ) // Labels implements the Plotter interface, // drawing a set of labels at specified points. type Labels struct { XYs // Labels is the set of labels corresponding // to each point. Labels []string // TextStyle is the style of the label text. draw.TextStyle // XAlign and YAlign are multiplied by the width
// than the max number of GlyphDrawers // in the DefaultGlyphShapes slice. func Shape(i int) draw.GlyphDrawer { n := len(DefaultGlyphShapes) if i < 0 { return DefaultGlyphShapes[i%n+n] } return DefaultGlyphShapes[i%n] } // DefaultDashes is a set of dash patterns used by // the Dashes function. var DefaultDashes = [][]vg.Length{ {}, {vg.Points(6), vg.Points(2)}, {vg.Points(2), vg.Points(2)}, {vg.Points(1), vg.Points(1)}, {vg.Points(5), vg.Points(2), vg.Points(1), vg.Points(2)}, {vg.Points(10), vg.Points(2), vg.Points(2), vg.Points(2), vg.Points(2), vg.Points(2), vg.Points(2), vg.Points(2)}, {vg.Points(10), vg.Points(2), vg.Points(2), vg.Points(2)}, {vg.Points(5), vg.Points(2), vg.Points(5), vg.Points(2), vg.Points(2), vg.Points(2), vg.Points(2), vg.Points(2)},
import ( "errors" "image/color" "math" "github.com/sksullivan/plot/vg" "github.com/sksullivan/plot/vg/draw" ) var ( // DefaultLineStyle is the default style for drawing // lines. DefaultLineStyle = draw.LineStyle{ Color: color.Black, Width: vg.Points(1), Dashes: []vg.Length{}, DashOffs: 0, } // DefaultGlyphStyle is the default style used // for gyph marks. DefaultGlyphStyle = draw.GlyphStyle{ Color: color.Black, Radius: vg.Points(2.5), Shape: draw.RingGlyph{}, } ) // Valuer wraps the Len and Value methods. type Valuer interface {
package plotter import ( "image/color" "github.com/sksullivan/plot" "github.com/sksullivan/plot/vg" "github.com/sksullivan/plot/vg/draw" ) var ( // DefaultGridLineStyle is the default style for grid lines. DefaultGridLineStyle = draw.LineStyle{ Color: color.Gray{128}, Width: vg.Points(0.25), } ) // Grid implements the plot.Plotter interface, drawing // a set of grid lines at the major tick marks. type Grid struct { // Vertical is the style of the vertical lines. Vertical draw.LineStyle // Horizontal is the style of the horizontal lines. Horizontal draw.LineStyle } // NewGrid returns a new grid with both vertical and // horizontal lines using the default grid line style.
func TestLegendAlignment(t *testing.T) { font, err := vg.MakeFont(plot.DefaultFont, 10.822510822510822) // This font size gives an entry height of 10. if err != nil { t.Fatalf("failed to create font: %v", err) } l := plot.Legend{ ThumbnailWidth: vg.Points(20), TextStyle: draw.TextStyle{Font: font}, } for _, n := range []string{"A", "B", "C", "D"} { b, err := plotter.NewBarChart(plotter.Values{0}, 1) if err != nil { t.Fatalf("failed to create bar chart %q: %v", n, err) } l.Add(n, b) } r := recorder.New(100) c := draw.NewCanvas(r, 100, 100) l.Draw(draw.Canvas{ Canvas: c.Canvas, Rectangle: draw.Rectangle{ Min: draw.Point{0, 0}, Max: draw.Point{100, 100}, }, }) got := r.Actions // want is a snapshot of the actions for the code above when the // graphical output has been visually confirmed to be correct for // the bar charts example show in gonum/plot#25. want := []recorder.Action{ &recorder.SetColor{ Color: color.Gray16{}, }, &recorder.Fill{ Path: vg.Path{ {Type: vg.MoveComp, X: 80, Y: 30}, {Type: vg.LineComp, X: 80, Y: 40}, {Type: vg.LineComp, X: 100, Y: 40}, {Type: vg.LineComp, X: 100, Y: 30}, {Type: vg.CloseComp}, }, }, &recorder.SetColor{ Color: color.Gray16{}, }, &recorder.SetLineWidth{ Width: 1, }, &recorder.SetLineDash{}, &recorder.Stroke{ Path: vg.Path{ {Type: vg.MoveComp, X: 80, Y: 30}, {Type: vg.LineComp, X: 80, Y: 40}, {Type: vg.LineComp, X: 100, Y: 40}, {Type: vg.LineComp, X: 100, Y: 30}, {Type: vg.LineComp, X: 80, Y: 30}, }, }, &recorder.SetColor{}, &recorder.FillString{ Font: string("Times-Roman"), Size: 10.822510822510822, X: 69.48051948051948, Y: 30.82251082251082, String: "A", }, &recorder.SetColor{ Color: color.Gray16{}, }, &recorder.Fill{ Path: vg.Path{ {Type: vg.MoveComp, X: 80, Y: 20}, {Type: vg.LineComp, X: 80, Y: 30}, {Type: vg.LineComp, X: 100, Y: 30}, {Type: vg.LineComp, X: 100, Y: 20}, {Type: vg.CloseComp}, }, }, &recorder.SetColor{ Color: color.Gray16{}, }, &recorder.SetLineWidth{ Width: 1, }, &recorder.SetLineDash{}, &recorder.Stroke{ Path: vg.Path{ {Type: vg.MoveComp, X: 80, Y: 20}, {Type: vg.LineComp, X: 80, Y: 30}, {Type: vg.LineComp, X: 100, Y: 30}, {Type: vg.LineComp, X: 100, Y: 20}, {Type: vg.LineComp, X: 80, Y: 20}, }, }, &recorder.SetColor{}, &recorder.FillString{ Font: string("Times-Roman"), Size: 10.822510822510822, X: 70.07575757575758, Y: 20.82251082251082, String: "B", }, &recorder.SetColor{ Color: color.Gray16{ Y: uint16(0), }, }, &recorder.Fill{ Path: vg.Path{ {Type: vg.MoveComp, X: 80, Y: 10}, {Type: vg.LineComp, X: 80, Y: 20}, {Type: vg.LineComp, X: 100, Y: 20}, {Type: vg.LineComp, X: 100, Y: 10}, {Type: vg.CloseComp}, }, }, &recorder.SetColor{ Color: color.Gray16{}, }, &recorder.SetLineWidth{ Width: 1, }, &recorder.SetLineDash{}, &recorder.Stroke{ Path: vg.Path{ {Type: vg.MoveComp, X: 80, Y: 10}, {Type: vg.LineComp, X: 80, Y: 20}, {Type: vg.LineComp, X: 100, Y: 20}, {Type: vg.LineComp, X: 100, Y: 10}, {Type: vg.LineComp, X: 80, Y: 10}, }, }, &recorder.SetColor{}, &recorder.FillString{ Font: string("Times-Roman"), Size: 10.822510822510822, X: 70.07575757575758, Y: 10.822510822510822, String: "C", }, &recorder.SetColor{ Color: color.Gray16{}, }, &recorder.Fill{ Path: vg.Path{ {Type: vg.MoveComp, X: 80, Y: 0}, {Type: vg.LineComp, X: 80, Y: 10}, {Type: vg.LineComp, X: 100, Y: 10}, {Type: vg.LineComp, X: 100, Y: 0}, {Type: vg.CloseComp}, }, }, &recorder.SetColor{ Color: color.Gray16{}, }, &recorder.SetLineWidth{ Width: 1, }, &recorder.SetLineDash{}, &recorder.Stroke{ Path: vg.Path{ {Type: vg.MoveComp, X: 80, Y: 0}, {Type: vg.LineComp, X: 80, Y: 10}, {Type: vg.LineComp, X: 100, Y: 10}, {Type: vg.LineComp, X: 100, Y: 0}, {Type: vg.LineComp, X: 80, Y: 0}, }, }, &recorder.SetColor{}, &recorder.FillString{ Font: string("Times-Roman"), Size: 10.822510822510822, X: 69.48051948051948, Y: 0.8225108225108215, String: "D", }, } if !reflect.DeepEqual(got, want) { t.Errorf("unexpected legend actions:\ngot:\n%s\nwant:\n%s", formatActions(got), formatActions(want)) } }
func TestPersistency(t *testing.T) { // Get some random points rand.Seed(0) n := 15 scatterData := randomPoints(n) lineData := randomPoints(n) linePointsData := randomPoints(n) p, err := plot.New() if err != nil { t.Fatalf("error creating plot: %v\n", err) } p.Title.Text = "Plot Example" p.X.Label.Text = "X" p.Y.Label.Text = "Y" // Use a custom tick marker function that computes the default // tick marks and re-labels the major ticks with commas. p.Y.Tick.Marker = commaTicks{} // Draw a grid behind the data p.Add(plotter.NewGrid()) // Make a scatter plotter and set its style. s, err := plotter.NewScatter(scatterData) if err != nil { panic(err) } s.GlyphStyle.Color = color.RGBA{R: 255, B: 128, A: 255} // Make a line plotter and set its style. l, err := plotter.NewLine(lineData) if err != nil { panic(err) } l.LineStyle.Width = vg.Points(1) l.LineStyle.Dashes = []vg.Length{vg.Points(5), vg.Points(5)} l.LineStyle.Color = color.RGBA{B: 255, A: 255} // Make a line plotter with points and set its style. lpLine, lpPoints, err := plotter.NewLinePoints(linePointsData) if err != nil { panic(err) } lpLine.Color = color.RGBA{G: 255, A: 255} lpPoints.Shape = draw.PyramidGlyph{} lpPoints.Color = color.RGBA{R: 255, A: 255} // Add the plotters to the plot, with a legend // entry for each p.Add(s, l, lpLine, lpPoints) p.Legend.Add("scatter", s) p.Legend.Add("line", l) p.Legend.Add("line points", lpLine, lpPoints) // Save the plot to a PNG file. err = p.Save(4, 4, "test-persistency.png") if err != nil { t.Fatalf("error saving to PNG: %v\n", err) } defer os.Remove("test-persistency.png") buf := new(bytes.Buffer) enc := gob.NewEncoder(buf) err = enc.Encode(p) if err != nil { t.Fatalf("error gob-encoding plot: %v\n", err) } // TODO(sbinet): impl. BinaryMarshal for plot.Plot and vg.Font // { // dec := gob.NewDecoder(buf) // var p plot.Plot // err = dec.Decode(&p) // if err != nil { // t.Fatalf("error gob-decoding plot: %v\n", err) // } // // Save the plot to a PNG file. // err = p.Save(4, 4, "test-persistency-readback.png") // if err != nil { // t.Fatalf("error saving to PNG: %v\n", err) // } // defer os.Remove("test-persistency-readback.png") // } }