예제 #1
0
파일: train.go 프로젝트: unixpickle/weakai
func TrainCmd(netPath, dirPath string) {
	log.Println("Loading samples...")
	images, width, height, err := LoadTrainingImages(dirPath)
	if err != nil {
		fmt.Fprintln(os.Stderr, err)
		os.Exit(1)
	}

	log.Println("Creating network...")

	var network neuralnet.Network
	networkData, err := ioutil.ReadFile(netPath)
	if err == nil {
		network, err = neuralnet.DeserializeNetwork(networkData)
		if err != nil {
			fmt.Fprintln(os.Stderr, "Failed to load network:", err)
			os.Exit(1)
		}
		log.Println("Loaded network from file.")
	} else {
		mean, stddev := sampleStatistics(images)
		convLayer := &neuralnet.ConvLayer{
			FilterCount:  FilterCount,
			FilterWidth:  4,
			FilterHeight: 4,
			Stride:       2,

			InputWidth:  width,
			InputHeight: height,
			InputDepth:  ImageDepth,
		}
		maxLayer := &neuralnet.MaxPoolingLayer{
			XSpan:       3,
			YSpan:       3,
			InputWidth:  convLayer.OutputWidth(),
			InputHeight: convLayer.OutputHeight(),
			InputDepth:  convLayer.OutputDepth(),
		}
		convLayer1 := &neuralnet.ConvLayer{
			FilterCount:  FilterCount1,
			FilterWidth:  3,
			FilterHeight: 3,
			Stride:       2,

			InputWidth:  maxLayer.OutputWidth(),
			InputHeight: maxLayer.OutputHeight(),
			InputDepth:  maxLayer.InputDepth,
		}
		network = neuralnet.Network{
			&neuralnet.RescaleLayer{
				Bias:  -mean,
				Scale: 1 / stddev,
			},
			convLayer,
			neuralnet.HyperbolicTangent{},
			maxLayer,
			neuralnet.HyperbolicTangent{},
			convLayer1,
			neuralnet.HyperbolicTangent{},
			&neuralnet.DenseLayer{
				InputCount: convLayer1.OutputWidth() * convLayer1.OutputHeight() *
					convLayer1.OutputDepth(),
				OutputCount: HiddenSize,
			},
			neuralnet.HyperbolicTangent{},
			&neuralnet.DenseLayer{
				InputCount:  HiddenSize,
				OutputCount: len(images),
			},
			&neuralnet.LogSoftmaxLayer{},
		}
		network.Randomize()
		log.Println("Created new network.")
	}

	samples := neuralSamples(images)
	sgd.ShuffleSampleSet(samples)

	validationCount := int(ValidationFraction * float64(samples.Len()))
	validationSamples := samples.Subset(0, validationCount)
	trainingSamples := samples.Subset(validationCount, samples.Len())

	costFunc := neuralnet.DotCost{}
	gradienter := &sgd.Adam{
		Gradienter: &neuralnet.BatchRGradienter{
			Learner: network.BatchLearner(),
			CostFunc: &neuralnet.RegularizingCost{
				Variables: network.Parameters(),
				Penalty:   Regularization,
				CostFunc:  costFunc,
			},
		},
	}
	sgd.SGDInteractive(gradienter, trainingSamples, StepSize, BatchSize, func() bool {
		log.Printf("Costs: validation=%d/%d cost=%f",
			countCorrect(network, validationSamples), validationSamples.Len(),
			neuralnet.TotalCost(costFunc, network, trainingSamples))
		return true
	})

	data, _ := network.Serialize()
	if err := ioutil.WriteFile(netPath, data, 0755); err != nil {
		fmt.Fprintln(os.Stderr, "Failed to save:", err)
		os.Exit(1)
	}
}
예제 #2
0
func Train(rnnFile, sampleDir string, stepSize float64) {
	log.Println("Loading samples...")
	samples, err := ReadSamples(sampleDir)
	if err != nil {
		fmt.Fprintln(os.Stderr, "Failed to read samples:", err)
		os.Exit(1)
	}

	var seqFunc *rnn.Bidirectional
	rnnData, err := ioutil.ReadFile(rnnFile)
	if err == nil {
		log.Println("Loaded network from file.")
		seqFunc, err = rnn.DeserializeBidirectional(rnnData)
		if err != nil {
			fmt.Fprintln(os.Stderr, "Failed to deserialize network:", err)
			os.Exit(1)
		}
	} else {
		log.Println("Created network.")
		seqFunc = createNetwork(samples)
	}

	crossLen := int(CrossRatio * float64(samples.Len()))
	log.Println("Using", samples.Len()-crossLen, "training and",
		crossLen, "validation samples...")

	// Always shuffle the samples in the same way.
	rand.Seed(123)
	sgd.ShuffleSampleSet(samples)
	validation := samples.Subset(0, crossLen)
	training := samples.Subset(crossLen, samples.Len())

	gradienter := &sgd.Adam{
		Gradienter: &ctc.RGradienter{
			Learner:        seqFunc,
			SeqFunc:        seqFunc,
			MaxConcurrency: MaxConcurrency,
			MaxSubBatch:    MaxSubBatch,
		},
	}

	var epoch int
	toggleRegularization(seqFunc, true)
	sgd.SGDInteractive(gradienter, training, stepSize, BatchSize, func() bool {
		toggleRegularization(seqFunc, false)
		cost := ctc.TotalCost(seqFunc, training, CostBatchSize, MaxConcurrency)
		crossCost := ctc.TotalCost(seqFunc, validation, CostBatchSize, MaxConcurrency)
		toggleRegularization(seqFunc, true)
		log.Printf("Epoch %d: cost=%e cross=%e", epoch, cost, crossCost)
		epoch++
		return true
	})
	toggleRegularization(seqFunc, false)

	data, err := seqFunc.Serialize()
	if err != nil {
		fmt.Fprintln(os.Stderr, "Failed to serialize:", err)
		os.Exit(1)
	}

	if err := ioutil.WriteFile(rnnFile, data, 0755); err != nil {
		fmt.Fprintln(os.Stderr, "Failed to save:", err)
		os.Exit(1)
	}
}