예제 #1
0
func (v *Variable) setValue(y *Variable) error {
	var err error
	switch v.Kind {
	case reflect.Float32, reflect.Float64:
		f, _ := constant.Float64Val(y.Value)
		err = v.writeFloatRaw(f, v.RealType.Size())
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		n, _ := constant.Int64Val(y.Value)
		err = v.writeUint(uint64(n), v.RealType.Size())
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
		n, _ := constant.Uint64Val(y.Value)
		err = v.writeUint(n, v.RealType.Size())
	case reflect.Bool:
		err = v.writeBool(constant.BoolVal(y.Value))
	case reflect.Complex64, reflect.Complex128:
		real, _ := constant.Float64Val(constant.Real(y.Value))
		imag, _ := constant.Float64Val(constant.Imag(y.Value))
		err = v.writeComplex(real, imag, v.RealType.Size())
	default:
		fmt.Printf("default\n")
		if t, isptr := v.RealType.(*dwarf.PtrType); isptr {
			err = v.writeUint(uint64(y.Children[0].Addr), int64(t.ByteSize))
		} else {
			return fmt.Errorf("can not set variables of type %s (not implemented)", v.Kind.String())
		}
	}

	return err
}
예제 #2
0
func (p *exporter) value(x constant.Value) {
	if trace {
		p.tracef("value { ")
		defer p.tracef("} ")
	}

	switch kind := x.Kind(); kind {
	case constant.Bool:
		tag := falseTag
		if constant.BoolVal(x) {
			tag = trueTag
		}
		p.int(tag)
	case constant.Int:
		if i, ok := constant.Int64Val(x); ok {
			p.int(int64Tag)
			p.int64(i)
			return
		}
		p.int(floatTag)
		p.float(x)
	case constant.Float:
		p.int(fractionTag)
		p.fraction(x)
	case constant.Complex:
		p.int(complexTag)
		p.fraction(constant.Real(x))
		p.fraction(constant.Imag(x))
	case constant.String:
		p.int(stringTag)
		p.string(constant.StringVal(x))
	default:
		panic(fmt.Sprintf("unexpected value kind %d", kind))
	}
}
예제 #3
0
func BoolValue(expr ast.Expr, info *types.Info) (bool, bool) {
	v := info.Types[expr].Value
	if v != nil && v.Kind() == constant.Bool {
		return constant.BoolVal(v), true
	}
	switch e := expr.(type) {
	case *ast.BinaryExpr:
		switch e.Op {
		case token.LAND:
			if b, ok := BoolValue(e.X, info); ok {
				if !b {
					return false, true
				}
				return BoolValue(e.Y, info)
			}
		case token.LOR:
			if b, ok := BoolValue(e.X, info); ok {
				if b {
					return true, true
				}
				return BoolValue(e.Y, info)
			}
		}
	case *ast.UnaryExpr:
		if e.Op == token.NOT {
			if b, ok := BoolValue(e.X, info); ok {
				return !b, true
			}
		}
	case *ast.ParenExpr:
		return BoolValue(e.X, info)
	}
	return false, false
}
예제 #4
0
파일: ops.go 프로젝트: tsandall/opa
// constValue returns the value of the constant with the
// dynamic type tag appropriate for c.Type().
func constValue(c *ssa.Const) value {
	if c.IsNil() {
		return zero(c.Type()) // typed nil
	}

	if t, ok := c.Type().Underlying().(*types.Basic); ok {
		// TODO(adonovan): eliminate untyped constants from SSA form.
		switch t.Kind() {
		case types.Bool, types.UntypedBool:
			return exact.BoolVal(c.Value)
		case types.Int, types.UntypedInt:
			// Assume sizeof(int) is same on host and target.
			return int(c.Int64())
		case types.Int8:
			return int8(c.Int64())
		case types.Int16:
			return int16(c.Int64())
		case types.Int32, types.UntypedRune:
			return int32(c.Int64())
		case types.Int64:
			return c.Int64()
		case types.Uint:
			// Assume sizeof(uint) is same on host and target.
			return uint(c.Uint64())
		case types.Uint8:
			return uint8(c.Uint64())
		case types.Uint16:
			return uint16(c.Uint64())
		case types.Uint32:
			return uint32(c.Uint64())
		case types.Uint64:
			return c.Uint64()
		case types.Uintptr:
			// Assume sizeof(uintptr) is same on host and target.
			return uintptr(c.Uint64())
		case types.Float32:
			return float32(c.Float64())
		case types.Float64, types.UntypedFloat:
			return c.Float64()
		case types.Complex64:
			return complex64(c.Complex128())
		case types.Complex128, types.UntypedComplex:
			return c.Complex128()
		case types.String, types.UntypedString:
			if c.Value.Kind() == exact.String {
				return exact.StringVal(c.Value)
			}
			return string(rune(c.Int64()))
		}
	}

	panic(fmt.Sprintf("constValue: %s", c))
}
예제 #5
0
파일: genobjc.go 프로젝트: pankona/mobile
func (g *ObjcGen) genConstM(o *types.Const) {
	if _, ok := o.Type().(*types.Basic); !ok {
		g.Printf("// skipped const %s with unsupported type: %T\n\n", o.Name(), o)
		return
	}
	cName := fmt.Sprintf("%s%s", g.namePrefix, o.Name())
	objcType := g.objcType(o.Type())

	switch b := o.Type().(*types.Basic); b.Kind() {
	case types.Bool, types.UntypedBool:
		v := "NO"
		if constant.BoolVal(o.Val()) {
			v = "YES"
		}
		g.Printf("const BOOL %s = %s;\n", cName, v)

	case types.String, types.UntypedString:
		g.Printf("NSString* const %s = @%s;\n", cName, constExactString(o))

	case types.Int, types.Int8, types.Int16, types.Int32:
		g.Printf("const %s %s = %s;\n", objcType, cName, o.Val())

	case types.Int64, types.UntypedInt:
		i, exact := constant.Int64Val(o.Val())
		if !exact {
			g.errorf("const value %s for %s cannot be represented as %s", o.Val(), o.Name(), objcType)
			return
		}
		if i == math.MinInt64 {
			// -9223372036854775808LL does not work because 922337203685477508 is
			// larger than max int64.
			g.Printf("const int64_t %s = %dLL-1;\n", cName, i+1)
		} else {
			g.Printf("const int64_t %s = %dLL;\n", cName, i)
		}

	case types.Float32, types.Float64, types.UntypedFloat:
		f, _ := constant.Float64Val(o.Val())
		if math.IsInf(f, 0) || math.Abs(f) > math.MaxFloat64 {
			g.errorf("const value %s for %s cannot be represented as double", o.Val(), o.Name())
			return
		}
		g.Printf("const %s %s = %g;\n", objcType, cName, f)

	default:
		g.errorf("unsupported const type %s for %s", b, o.Name())
	}
}
예제 #6
0
func (p *exporter) value(x constant.Value) {
	if trace {
		p.tracef("= ")
	}

	switch x.Kind() {
	case constant.Bool:
		tag := falseTag
		if constant.BoolVal(x) {
			tag = trueTag
		}
		p.tag(tag)

	case constant.Int:
		if v, exact := constant.Int64Val(x); exact {
			// common case: x fits into an int64 - use compact encoding
			p.tag(int64Tag)
			p.int64(v)
			return
		}
		// uncommon case: large x - use float encoding
		// (powers of 2 will be encoded efficiently with exponent)
		p.tag(floatTag)
		p.float(constant.ToFloat(x))

	case constant.Float:
		p.tag(floatTag)
		p.float(x)

	case constant.Complex:
		p.tag(complexTag)
		p.float(constant.Real(x))
		p.float(constant.Imag(x))

	case constant.String:
		p.tag(stringTag)
		p.string(constant.StringVal(x))

	case constant.Unknown:
		// package contains type errors
		p.tag(unknownTag)

	default:
		log.Fatalf("gcimporter: unexpected value %v (%T)", x, x)
	}
}
예제 #7
0
func (bp *Breakpoint) checkCondition(thread *Thread) (bool, error) {
	if bp.Cond == nil {
		return true, nil
	}
	scope, err := thread.Scope()
	if err != nil {
		return true, err
	}
	v, err := scope.evalAST(bp.Cond)
	if err != nil {
		return true, fmt.Errorf("error evaluating expression: %v", err)
	}
	if v.Unreadable != nil {
		return true, fmt.Errorf("condition expression unreadable: %v", v.Unreadable)
	}
	if v.Kind != reflect.Bool {
		return true, errors.New("condition expression not boolean")
	}
	return constant.BoolVal(v.Value), nil
}
예제 #8
0
파일: importer.go 프로젝트: tcard/sgo
func (c *converter) convertConstantValue(v goconstant.Value) constant.Value {
	if v == nil {
		return nil
	}
	if v, ok := c.converted[v]; ok {
		return v.(constant.Value)
	}
	var ret constant.Value
	switch v.Kind() {
	case goconstant.Bool:
		ret = constant.MakeBool(goconstant.BoolVal(v))
	case goconstant.String:
		ret = constant.MakeString(goconstant.StringVal(v))
	case goconstant.Int:
		ret = constant.MakeFromLiteral(v.String(), token.INT, 0)
	case goconstant.Float:
		ret = constant.MakeFromLiteral(v.String(), token.FLOAT, 0)
	case goconstant.Complex:
		ret = constant.MakeFromLiteral(v.String(), token.IMAG, 0)
	}
	c.converted[v] = ret
	return ret
}
예제 #9
0
파일: builtins.go 프로젝트: Greentor/go
// builtin type-checks a call to the built-in specified by id and
// returns true if the call is valid, with *x holding the result;
// but x.expr is not set. If the call is invalid, the result is
// false, and *x is undefined.
//
func (check *Checker) builtin(x *operand, call *ast.CallExpr, id builtinId) (_ bool) {
	// append is the only built-in that permits the use of ... for the last argument
	bin := predeclaredFuncs[id]
	if call.Ellipsis.IsValid() && id != _Append {
		check.invalidOp(call.Ellipsis, "invalid use of ... with built-in %s", bin.name)
		check.use(call.Args...)
		return
	}

	// For len(x) and cap(x) we need to know if x contains any function calls or
	// receive operations. Save/restore current setting and set hasCallOrRecv to
	// false for the evaluation of x so that we can check it afterwards.
	// Note: We must do this _before_ calling unpack because unpack evaluates the
	//       first argument before we even call arg(x, 0)!
	if id == _Len || id == _Cap {
		defer func(b bool) {
			check.hasCallOrRecv = b
		}(check.hasCallOrRecv)
		check.hasCallOrRecv = false
	}

	// determine actual arguments
	var arg getter
	nargs := len(call.Args)
	switch id {
	default:
		// make argument getter
		arg, nargs, _ = unpack(func(x *operand, i int) { check.multiExpr(x, call.Args[i]) }, nargs, false)
		if arg == nil {
			return
		}
		// evaluate first argument, if present
		if nargs > 0 {
			arg(x, 0)
			if x.mode == invalid {
				return
			}
		}
	case _Make, _New, _Offsetof, _Trace:
		// arguments require special handling
	}

	// check argument count
	{
		msg := ""
		if nargs < bin.nargs {
			msg = "not enough"
		} else if !bin.variadic && nargs > bin.nargs {
			msg = "too many"
		}
		if msg != "" {
			check.invalidOp(call.Rparen, "%s arguments for %s (expected %d, found %d)", msg, call, bin.nargs, nargs)
			return
		}
	}

	switch id {
	case _Append:
		// append(s S, x ...T) S, where T is the element type of S
		// spec: "The variadic function append appends zero or more values x to s of type
		// S, which must be a slice type, and returns the resulting slice, also of type S.
		// The values x are passed to a parameter of type ...T where T is the element type
		// of S and the respective parameter passing rules apply."
		S := x.typ
		var T Type
		if s, _ := S.Underlying().(*Slice); s != nil {
			T = s.elem
		} else {
			check.invalidArg(x.pos(), "%s is not a slice", x)
			return
		}

		// remember arguments that have been evaluated already
		alist := []operand{*x}

		// spec: "As a special case, append also accepts a first argument assignable
		// to type []byte with a second argument of string type followed by ... .
		// This form appends the bytes of the string.
		if nargs == 2 && call.Ellipsis.IsValid() && x.assignableTo(check.conf, NewSlice(universeByte), nil) {
			arg(x, 1)
			if x.mode == invalid {
				return
			}
			if isString(x.typ) {
				if check.Types != nil {
					sig := makeSig(S, S, x.typ)
					sig.variadic = true
					check.recordBuiltinType(call.Fun, sig)
				}
				x.mode = value
				x.typ = S
				break
			}
			alist = append(alist, *x)
			// fallthrough
		}

		// check general case by creating custom signature
		sig := makeSig(S, S, NewSlice(T)) // []T required for variadic signature
		sig.variadic = true
		check.arguments(x, call, sig, func(x *operand, i int) {
			// only evaluate arguments that have not been evaluated before
			if i < len(alist) {
				*x = alist[i]
				return
			}
			arg(x, i)
		}, nargs)
		// ok to continue even if check.arguments reported errors

		x.mode = value
		x.typ = S
		if check.Types != nil {
			check.recordBuiltinType(call.Fun, sig)
		}

	case _Cap, _Len:
		// cap(x)
		// len(x)
		mode := invalid
		var typ Type
		var val constant.Value
		switch typ = implicitArrayDeref(x.typ.Underlying()); t := typ.(type) {
		case *Basic:
			if isString(t) && id == _Len {
				if x.mode == constant_ {
					mode = constant_
					val = constant.MakeInt64(int64(len(constant.StringVal(x.val))))
				} else {
					mode = value
				}
			}

		case *Array:
			mode = value
			// spec: "The expressions len(s) and cap(s) are constants
			// if the type of s is an array or pointer to an array and
			// the expression s does not contain channel receives or
			// function calls; in this case s is not evaluated."
			if !check.hasCallOrRecv {
				mode = constant_
				val = constant.MakeInt64(t.len)
			}

		case *Slice, *Chan:
			mode = value

		case *Map:
			if id == _Len {
				mode = value
			}
		}

		if mode == invalid {
			check.invalidArg(x.pos(), "%s for %s", x, bin.name)
			return
		}

		x.mode = mode
		x.typ = Typ[Int]
		x.val = val
		if check.Types != nil && mode != constant_ {
			check.recordBuiltinType(call.Fun, makeSig(x.typ, typ))
		}

	case _Close:
		// close(c)
		c, _ := x.typ.Underlying().(*Chan)
		if c == nil {
			check.invalidArg(x.pos(), "%s is not a channel", x)
			return
		}
		if c.dir == RecvOnly {
			check.invalidArg(x.pos(), "%s must not be a receive-only channel", x)
			return
		}

		x.mode = novalue
		if check.Types != nil {
			check.recordBuiltinType(call.Fun, makeSig(nil, c))
		}

	case _Complex:
		// complex(x, y floatT) complexT
		var y operand
		arg(&y, 1)
		if y.mode == invalid {
			return
		}

		// convert or check untyped arguments
		d := 0
		if isUntyped(x.typ) {
			d |= 1
		}
		if isUntyped(y.typ) {
			d |= 2
		}
		switch d {
		case 0:
			// x and y are typed => nothing to do
		case 1:
			// only x is untyped => convert to type of y
			check.convertUntyped(x, y.typ)
		case 2:
			// only y is untyped => convert to type of x
			check.convertUntyped(&y, x.typ)
		case 3:
			// x and y are untyped =>
			// 1) if both are constants, convert them to untyped
			//    floating-point numbers if possible,
			// 2) if one of them is not constant (possible because
			//    it contains a shift that is yet untyped), convert
			//    both of them to float64 since they must have the
			//    same type to succeed (this will result in an error
			//    because shifts of floats are not permitted)
			if x.mode == constant_ && y.mode == constant_ {
				toFloat := func(x *operand) {
					if isNumeric(x.typ) && constant.Sign(constant.Imag(x.val)) == 0 {
						x.typ = Typ[UntypedFloat]
					}
				}
				toFloat(x)
				toFloat(&y)
			} else {
				check.convertUntyped(x, Typ[Float64])
				check.convertUntyped(&y, Typ[Float64])
				// x and y should be invalid now, but be conservative
				// and check below
			}
		}
		if x.mode == invalid || y.mode == invalid {
			return
		}

		// both argument types must be identical
		if !Identical(x.typ, y.typ) {
			check.invalidArg(x.pos(), "mismatched types %s and %s", x.typ, y.typ)
			return
		}

		// the argument types must be of floating-point type
		if !isFloat(x.typ) {
			check.invalidArg(x.pos(), "arguments have type %s, expected floating-point", x.typ)
			return
		}

		// if both arguments are constants, the result is a constant
		if x.mode == constant_ && y.mode == constant_ {
			x.val = constant.BinaryOp(constant.ToFloat(x.val), token.ADD, constant.MakeImag(constant.ToFloat(y.val)))
		} else {
			x.mode = value
		}

		// determine result type
		var res BasicKind
		switch x.typ.Underlying().(*Basic).kind {
		case Float32:
			res = Complex64
		case Float64:
			res = Complex128
		case UntypedFloat:
			res = UntypedComplex
		default:
			unreachable()
		}
		resTyp := Typ[res]

		if check.Types != nil && x.mode != constant_ {
			check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ, x.typ))
		}

		x.typ = resTyp

	case _Copy:
		// copy(x, y []T) int
		var dst Type
		if t, _ := x.typ.Underlying().(*Slice); t != nil {
			dst = t.elem
		}

		var y operand
		arg(&y, 1)
		if y.mode == invalid {
			return
		}
		var src Type
		switch t := y.typ.Underlying().(type) {
		case *Basic:
			if isString(y.typ) {
				src = universeByte
			}
		case *Slice:
			src = t.elem
		}

		if dst == nil || src == nil {
			check.invalidArg(x.pos(), "copy expects slice arguments; found %s and %s", x, &y)
			return
		}

		if !Identical(dst, src) {
			check.invalidArg(x.pos(), "arguments to copy %s and %s have different element types %s and %s", x, &y, dst, src)
			return
		}

		if check.Types != nil {
			check.recordBuiltinType(call.Fun, makeSig(Typ[Int], x.typ, y.typ))
		}
		x.mode = value
		x.typ = Typ[Int]

	case _Delete:
		// delete(m, k)
		m, _ := x.typ.Underlying().(*Map)
		if m == nil {
			check.invalidArg(x.pos(), "%s is not a map", x)
			return
		}
		arg(x, 1) // k
		if x.mode == invalid {
			return
		}

		if !x.assignableTo(check.conf, m.key, nil) {
			check.invalidArg(x.pos(), "%s is not assignable to %s", x, m.key)
			return
		}

		x.mode = novalue
		if check.Types != nil {
			check.recordBuiltinType(call.Fun, makeSig(nil, m, m.key))
		}

	case _Imag, _Real:
		// imag(complexT) floatT
		// real(complexT) floatT

		// convert or check untyped argument
		if isUntyped(x.typ) {
			if x.mode == constant_ {
				// an untyped constant number can alway be considered
				// as a complex constant
				if isNumeric(x.typ) {
					x.typ = Typ[UntypedComplex]
				}
			} else {
				// an untyped non-constant argument may appear if
				// it contains a (yet untyped non-constant) shift
				// expression: convert it to complex128 which will
				// result in an error (shift of complex value)
				check.convertUntyped(x, Typ[Complex128])
				// x should be invalid now, but be conservative and check
				if x.mode == invalid {
					return
				}
			}
		}

		// the argument must be of complex type
		if !isComplex(x.typ) {
			check.invalidArg(x.pos(), "argument has type %s, expected complex type", x.typ)
			return
		}

		// if the argument is a constant, the result is a constant
		if x.mode == constant_ {
			if id == _Real {
				x.val = constant.Real(x.val)
			} else {
				x.val = constant.Imag(x.val)
			}
		} else {
			x.mode = value
		}

		// determine result type
		var res BasicKind
		switch x.typ.Underlying().(*Basic).kind {
		case Complex64:
			res = Float32
		case Complex128:
			res = Float64
		case UntypedComplex:
			res = UntypedFloat
		default:
			unreachable()
		}
		resTyp := Typ[res]

		if check.Types != nil && x.mode != constant_ {
			check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ))
		}

		x.typ = resTyp

	case _Make:
		// make(T, n)
		// make(T, n, m)
		// (no argument evaluated yet)
		arg0 := call.Args[0]
		T := check.typ(arg0)
		if T == Typ[Invalid] {
			return
		}

		var min int // minimum number of arguments
		switch T.Underlying().(type) {
		case *Slice:
			min = 2
		case *Map, *Chan:
			min = 1
		default:
			check.invalidArg(arg0.Pos(), "cannot make %s; type must be slice, map, or channel", arg0)
			return
		}
		if nargs < min || min+1 < nargs {
			check.errorf(call.Pos(), "%s expects %d or %d arguments; found %d", call, min, min+1, nargs)
			return
		}
		var sizes []int64 // constant integer arguments, if any
		for _, arg := range call.Args[1:] {
			if s, ok := check.index(arg, -1); ok && s >= 0 {
				sizes = append(sizes, s)
			}
		}
		if len(sizes) == 2 && sizes[0] > sizes[1] {
			check.invalidArg(call.Args[1].Pos(), "length and capacity swapped")
			// safe to continue
		}
		x.mode = value
		x.typ = T
		if check.Types != nil {
			params := [...]Type{T, Typ[Int], Typ[Int]}
			check.recordBuiltinType(call.Fun, makeSig(x.typ, params[:1+len(sizes)]...))
		}

	case _New:
		// new(T)
		// (no argument evaluated yet)
		T := check.typ(call.Args[0])
		if T == Typ[Invalid] {
			return
		}

		x.mode = value
		x.typ = &Pointer{base: T}
		if check.Types != nil {
			check.recordBuiltinType(call.Fun, makeSig(x.typ, T))
		}

	case _Panic:
		// panic(x)
		T := new(Interface)
		check.assignment(x, T, "argument to panic")
		if x.mode == invalid {
			return
		}

		x.mode = novalue
		if check.Types != nil {
			check.recordBuiltinType(call.Fun, makeSig(nil, T))
		}

	case _Print, _Println:
		// print(x, y, ...)
		// println(x, y, ...)
		var params []Type
		if nargs > 0 {
			params = make([]Type, nargs)
			for i := 0; i < nargs; i++ {
				if i > 0 {
					arg(x, i) // first argument already evaluated
				}
				check.assignment(x, nil, "argument to "+predeclaredFuncs[id].name)
				if x.mode == invalid {
					// TODO(gri) "use" all arguments?
					return
				}
				params[i] = x.typ
			}
		}

		x.mode = novalue
		if check.Types != nil {
			check.recordBuiltinType(call.Fun, makeSig(nil, params...))
		}

	case _Recover:
		// recover() interface{}
		x.mode = value
		x.typ = new(Interface)
		if check.Types != nil {
			check.recordBuiltinType(call.Fun, makeSig(x.typ))
		}

	case _Alignof:
		// unsafe.Alignof(x T) uintptr
		check.assignment(x, nil, "argument to unsafe.Alignof")
		if x.mode == invalid {
			return
		}

		x.mode = constant_
		x.val = constant.MakeInt64(check.conf.alignof(x.typ))
		x.typ = Typ[Uintptr]
		// result is constant - no need to record signature

	case _Offsetof:
		// unsafe.Offsetof(x T) uintptr, where x must be a selector
		// (no argument evaluated yet)
		arg0 := call.Args[0]
		selx, _ := unparen(arg0).(*ast.SelectorExpr)
		if selx == nil {
			check.invalidArg(arg0.Pos(), "%s is not a selector expression", arg0)
			check.use(arg0)
			return
		}

		check.expr(x, selx.X)
		if x.mode == invalid {
			return
		}

		base := derefStructPtr(x.typ)
		sel := selx.Sel.Name
		obj, index, indirect := LookupFieldOrMethod(base, false, check.pkg, sel)
		switch obj.(type) {
		case nil:
			check.invalidArg(x.pos(), "%s has no single field %s", base, sel)
			return
		case *Func:
			// TODO(gri) Using derefStructPtr may result in methods being found
			// that don't actually exist. An error either way, but the error
			// message is confusing. See: https://play.golang.org/p/al75v23kUy ,
			// but go/types reports: "invalid argument: x.m is a method value".
			check.invalidArg(arg0.Pos(), "%s is a method value", arg0)
			return
		}
		if indirect {
			check.invalidArg(x.pos(), "field %s is embedded via a pointer in %s", sel, base)
			return
		}

		// TODO(gri) Should we pass x.typ instead of base (and indirect report if derefStructPtr indirected)?
		check.recordSelection(selx, FieldVal, base, obj, index, false)

		offs := check.conf.offsetof(base, index)
		x.mode = constant_
		x.val = constant.MakeInt64(offs)
		x.typ = Typ[Uintptr]
		// result is constant - no need to record signature

	case _Sizeof:
		// unsafe.Sizeof(x T) uintptr
		check.assignment(x, nil, "argument to unsafe.Sizeof")
		if x.mode == invalid {
			return
		}

		x.mode = constant_
		x.val = constant.MakeInt64(check.conf.sizeof(x.typ))
		x.typ = Typ[Uintptr]
		// result is constant - no need to record signature

	case _Assert:
		// assert(pred) causes a typechecker error if pred is false.
		// The result of assert is the value of pred if there is no error.
		// Note: assert is only available in self-test mode.
		if x.mode != constant_ || !isBoolean(x.typ) {
			check.invalidArg(x.pos(), "%s is not a boolean constant", x)
			return
		}
		if x.val.Kind() != constant.Bool {
			check.errorf(x.pos(), "internal error: value of %s should be a boolean constant", x)
			return
		}
		if !constant.BoolVal(x.val) {
			check.errorf(call.Pos(), "%s failed", call)
			// compile-time assertion failure - safe to continue
		}
		// result is constant - no need to record signature

	case _Trace:
		// trace(x, y, z, ...) dumps the positions, expressions, and
		// values of its arguments. The result of trace is the value
		// of the first argument.
		// Note: trace is only available in self-test mode.
		// (no argument evaluated yet)
		if nargs == 0 {
			check.dump("%s: trace() without arguments", call.Pos())
			x.mode = novalue
			break
		}
		var t operand
		x1 := x
		for _, arg := range call.Args {
			check.rawExpr(x1, arg, nil) // permit trace for types, e.g.: new(trace(T))
			check.dump("%s: %s", x1.pos(), x1)
			x1 = &t // use incoming x only for first argument
		}
		// trace is only available in test mode - no need to record signature

	default:
		unreachable()
	}

	return true
}
예제 #10
0
func (c *funcContext) translateExpr(expr ast.Expr) *expression {
	exprType := c.p.TypeOf(expr)
	if value := c.p.Types[expr].Value; value != nil {
		basic := exprType.Underlying().(*types.Basic)
		switch {
		case isBoolean(basic):
			return c.formatExpr("%s", strconv.FormatBool(constant.BoolVal(value)))
		case isInteger(basic):
			if is64Bit(basic) {
				if basic.Kind() == types.Int64 {
					d, ok := constant.Int64Val(constant.ToInt(value))
					if !ok {
						panic("could not get exact uint")
					}
					return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatInt(d>>32, 10), strconv.FormatUint(uint64(d)&(1<<32-1), 10))
				}
				d, ok := constant.Uint64Val(constant.ToInt(value))
				if !ok {
					panic("could not get exact uint")
				}
				return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatUint(d>>32, 10), strconv.FormatUint(d&(1<<32-1), 10))
			}
			d, ok := constant.Int64Val(constant.ToInt(value))
			if !ok {
				panic("could not get exact int")
			}
			return c.formatExpr("%s", strconv.FormatInt(d, 10))
		case isFloat(basic):
			f, _ := constant.Float64Val(value)
			return c.formatExpr("%s", strconv.FormatFloat(f, 'g', -1, 64))
		case isComplex(basic):
			r, _ := constant.Float64Val(constant.Real(value))
			i, _ := constant.Float64Val(constant.Imag(value))
			if basic.Kind() == types.UntypedComplex {
				exprType = types.Typ[types.Complex128]
			}
			return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatFloat(r, 'g', -1, 64), strconv.FormatFloat(i, 'g', -1, 64))
		case isString(basic):
			return c.formatExpr("%s", encodeString(constant.StringVal(value)))
		default:
			panic("Unhandled constant type: " + basic.String())
		}
	}

	var obj types.Object
	switch e := expr.(type) {
	case *ast.SelectorExpr:
		obj = c.p.Uses[e.Sel]
	case *ast.Ident:
		obj = c.p.Defs[e]
		if obj == nil {
			obj = c.p.Uses[e]
		}
	}

	if obj != nil && typesutil.IsJsPackage(obj.Pkg()) {
		switch obj.Name() {
		case "Global":
			return c.formatExpr("$global")
		case "Module":
			return c.formatExpr("$module")
		case "Undefined":
			return c.formatExpr("undefined")
		}
	}

	switch e := expr.(type) {
	case *ast.CompositeLit:
		if ptrType, isPointer := exprType.(*types.Pointer); isPointer {
			exprType = ptrType.Elem()
		}

		collectIndexedElements := func(elementType types.Type) []string {
			var elements []string
			i := 0
			zero := c.translateExpr(c.zeroValue(elementType)).String()
			for _, element := range e.Elts {
				if kve, isKve := element.(*ast.KeyValueExpr); isKve {
					key, ok := constant.Int64Val(constant.ToInt(c.p.Types[kve.Key].Value))
					if !ok {
						panic("could not get exact int")
					}
					i = int(key)
					element = kve.Value
				}
				for len(elements) <= i {
					elements = append(elements, zero)
				}
				elements[i] = c.translateImplicitConversionWithCloning(element, elementType).String()
				i++
			}
			return elements
		}

		switch t := exprType.Underlying().(type) {
		case *types.Array:
			elements := collectIndexedElements(t.Elem())
			if len(elements) == 0 {
				return c.formatExpr("%s.zero()", c.typeName(t))
			}
			zero := c.translateExpr(c.zeroValue(t.Elem())).String()
			for len(elements) < int(t.Len()) {
				elements = append(elements, zero)
			}
			return c.formatExpr(`$toNativeArray(%s, [%s])`, typeKind(t.Elem()), strings.Join(elements, ", "))
		case *types.Slice:
			return c.formatExpr("new %s([%s])", c.typeName(exprType), strings.Join(collectIndexedElements(t.Elem()), ", "))
		case *types.Map:
			entries := make([]string, len(e.Elts))
			for i, element := range e.Elts {
				kve := element.(*ast.KeyValueExpr)
				entries[i] = fmt.Sprintf("{ k: %s, v: %s }", c.translateImplicitConversionWithCloning(kve.Key, t.Key()), c.translateImplicitConversionWithCloning(kve.Value, t.Elem()))
			}
			return c.formatExpr("$makeMap(%s.keyFor, [%s])", c.typeName(t.Key()), strings.Join(entries, ", "))
		case *types.Struct:
			elements := make([]string, t.NumFields())
			isKeyValue := true
			if len(e.Elts) != 0 {
				_, isKeyValue = e.Elts[0].(*ast.KeyValueExpr)
			}
			if !isKeyValue {
				for i, element := range e.Elts {
					elements[i] = c.translateImplicitConversionWithCloning(element, t.Field(i).Type()).String()
				}
			}
			if isKeyValue {
				for i := range elements {
					elements[i] = c.translateExpr(c.zeroValue(t.Field(i).Type())).String()
				}
				for _, element := range e.Elts {
					kve := element.(*ast.KeyValueExpr)
					for j := range elements {
						if kve.Key.(*ast.Ident).Name == t.Field(j).Name() {
							elements[j] = c.translateImplicitConversionWithCloning(kve.Value, t.Field(j).Type()).String()
							break
						}
					}
				}
			}
			return c.formatExpr("new %s.ptr(%s)", c.typeName(exprType), strings.Join(elements, ", "))
		default:
			panic(fmt.Sprintf("Unhandled CompositeLit type: %T\n", t))
		}

	case *ast.FuncLit:
		_, fun := translateFunction(e.Type, nil, e.Body, c, exprType.(*types.Signature), c.p.FuncLitInfos[e], "")
		if len(c.p.escapingVars) != 0 {
			names := make([]string, 0, len(c.p.escapingVars))
			for obj := range c.p.escapingVars {
				names = append(names, c.p.objectNames[obj])
			}
			sort.Strings(names)
			list := strings.Join(names, ", ")
			return c.formatExpr("(function(%s) { return %s; })(%s)", list, fun, list)
		}
		return c.formatExpr("(%s)", fun)

	case *ast.UnaryExpr:
		t := c.p.TypeOf(e.X)
		switch e.Op {
		case token.AND:
			if typesutil.IsJsObject(exprType) {
				return c.formatExpr("%e.object", e.X)
			}

			switch t.Underlying().(type) {
			case *types.Struct, *types.Array:
				return c.translateExpr(e.X)
			}

			switch x := astutil.RemoveParens(e.X).(type) {
			case *ast.CompositeLit:
				return c.formatExpr("$newDataPointer(%e, %s)", x, c.typeName(c.p.TypeOf(e)))
			case *ast.Ident:
				obj := c.p.Uses[x].(*types.Var)
				if c.p.escapingVars[obj] {
					return c.formatExpr("(%1s.$ptr || (%1s.$ptr = new %2s(function() { return this.$target[0]; }, function($v) { this.$target[0] = $v; }, %1s)))", c.p.objectNames[obj], c.typeName(exprType))
				}
				return c.formatExpr(`(%1s || (%1s = new %2s(function() { return %3s; }, function($v) { %4s })))`, c.varPtrName(obj), c.typeName(exprType), c.objectName(obj), c.translateAssign(x, c.newIdent("$v", exprType), false))
			case *ast.SelectorExpr:
				sel, ok := c.p.SelectionOf(x)
				if !ok {
					// qualified identifier
					obj := c.p.Uses[x.Sel].(*types.Var)
					return c.formatExpr(`(%1s || (%1s = new %2s(function() { return %3s; }, function($v) { %4s })))`, c.varPtrName(obj), c.typeName(exprType), c.objectName(obj), c.translateAssign(x, c.newIdent("$v", exprType), false))
				}
				newSel := &ast.SelectorExpr{X: c.newIdent("this.$target", c.p.TypeOf(x.X)), Sel: x.Sel}
				c.setType(newSel, exprType)
				c.p.additionalSelections[newSel] = sel
				return c.formatExpr("(%1e.$ptr_%2s || (%1e.$ptr_%2s = new %3s(function() { return %4e; }, function($v) { %5s }, %1e)))", x.X, x.Sel.Name, c.typeName(exprType), newSel, c.translateAssign(newSel, c.newIdent("$v", exprType), false))
			case *ast.IndexExpr:
				if _, ok := c.p.TypeOf(x.X).Underlying().(*types.Slice); ok {
					return c.formatExpr("$indexPtr(%1e.$array, %1e.$offset + %2e, %3s)", x.X, x.Index, c.typeName(exprType))
				}
				return c.formatExpr("$indexPtr(%e, %e, %s)", x.X, x.Index, c.typeName(exprType))
			case *ast.StarExpr:
				return c.translateExpr(x.X)
			default:
				panic(fmt.Sprintf("Unhandled: %T\n", x))
			}

		case token.ARROW:
			call := &ast.CallExpr{
				Fun:  c.newIdent("$recv", types.NewSignature(nil, types.NewTuple(types.NewVar(0, nil, "", t)), types.NewTuple(types.NewVar(0, nil, "", exprType), types.NewVar(0, nil, "", types.Typ[types.Bool])), false)),
				Args: []ast.Expr{e.X},
			}
			c.Blocking[call] = true
			if _, isTuple := exprType.(*types.Tuple); isTuple {
				return c.formatExpr("%e", call)
			}
			return c.formatExpr("%e[0]", call)
		}

		basic := t.Underlying().(*types.Basic)
		switch e.Op {
		case token.ADD:
			return c.translateExpr(e.X)
		case token.SUB:
			switch {
			case is64Bit(basic):
				return c.formatExpr("new %1s(-%2h, -%2l)", c.typeName(t), e.X)
			case isComplex(basic):
				return c.formatExpr("new %1s(-%2r, -%2i)", c.typeName(t), e.X)
			case isUnsigned(basic):
				return c.fixNumber(c.formatExpr("-%e", e.X), basic)
			default:
				return c.formatExpr("-%e", e.X)
			}
		case token.XOR:
			if is64Bit(basic) {
				return c.formatExpr("new %1s(~%2h, ~%2l >>> 0)", c.typeName(t), e.X)
			}
			return c.fixNumber(c.formatExpr("~%e", e.X), basic)
		case token.NOT:
			return c.formatExpr("!%e", e.X)
		default:
			panic(e.Op)
		}

	case *ast.BinaryExpr:
		if e.Op == token.NEQ {
			return c.formatExpr("!(%s)", c.translateExpr(&ast.BinaryExpr{
				X:  e.X,
				Op: token.EQL,
				Y:  e.Y,
			}))
		}

		t := c.p.TypeOf(e.X)
		t2 := c.p.TypeOf(e.Y)
		_, isInterface := t2.Underlying().(*types.Interface)
		if isInterface || types.Identical(t, types.Typ[types.UntypedNil]) {
			t = t2
		}

		if basic, isBasic := t.Underlying().(*types.Basic); isBasic && isNumeric(basic) {
			if is64Bit(basic) {
				switch e.Op {
				case token.MUL:
					return c.formatExpr("$mul64(%e, %e)", e.X, e.Y)
				case token.QUO:
					return c.formatExpr("$div64(%e, %e, false)", e.X, e.Y)
				case token.REM:
					return c.formatExpr("$div64(%e, %e, true)", e.X, e.Y)
				case token.SHL:
					return c.formatExpr("$shiftLeft64(%e, %f)", e.X, e.Y)
				case token.SHR:
					return c.formatExpr("$shiftRight%s(%e, %f)", toJavaScriptType(basic), e.X, e.Y)
				case token.EQL:
					return c.formatExpr("(%1h === %2h && %1l === %2l)", e.X, e.Y)
				case token.LSS:
					return c.formatExpr("(%1h < %2h || (%1h === %2h && %1l < %2l))", e.X, e.Y)
				case token.LEQ:
					return c.formatExpr("(%1h < %2h || (%1h === %2h && %1l <= %2l))", e.X, e.Y)
				case token.GTR:
					return c.formatExpr("(%1h > %2h || (%1h === %2h && %1l > %2l))", e.X, e.Y)
				case token.GEQ:
					return c.formatExpr("(%1h > %2h || (%1h === %2h && %1l >= %2l))", e.X, e.Y)
				case token.ADD, token.SUB:
					return c.formatExpr("new %3s(%1h %4t %2h, %1l %4t %2l)", e.X, e.Y, c.typeName(t), e.Op)
				case token.AND, token.OR, token.XOR:
					return c.formatExpr("new %3s(%1h %4t %2h, (%1l %4t %2l) >>> 0)", e.X, e.Y, c.typeName(t), e.Op)
				case token.AND_NOT:
					return c.formatExpr("new %3s(%1h & ~%2h, (%1l & ~%2l) >>> 0)", e.X, e.Y, c.typeName(t))
				default:
					panic(e.Op)
				}
			}

			if isComplex(basic) {
				switch e.Op {
				case token.EQL:
					return c.formatExpr("(%1r === %2r && %1i === %2i)", e.X, e.Y)
				case token.ADD, token.SUB:
					return c.formatExpr("new %3s(%1r %4t %2r, %1i %4t %2i)", e.X, e.Y, c.typeName(t), e.Op)
				case token.MUL:
					return c.formatExpr("new %3s(%1r * %2r - %1i * %2i, %1r * %2i + %1i * %2r)", e.X, e.Y, c.typeName(t))
				case token.QUO:
					return c.formatExpr("$divComplex(%e, %e)", e.X, e.Y)
				default:
					panic(e.Op)
				}
			}

			switch e.Op {
			case token.EQL:
				return c.formatParenExpr("%e === %e", e.X, e.Y)
			case token.LSS, token.LEQ, token.GTR, token.GEQ:
				return c.formatExpr("%e %t %e", e.X, e.Op, e.Y)
			case token.ADD, token.SUB:
				return c.fixNumber(c.formatExpr("%e %t %e", e.X, e.Op, e.Y), basic)
			case token.MUL:
				switch basic.Kind() {
				case types.Int32, types.Int:
					return c.formatParenExpr("$imul(%e, %e)", e.X, e.Y)
				case types.Uint32, types.Uintptr:
					return c.formatParenExpr("$imul(%e, %e) >>> 0", e.X, e.Y)
				}
				return c.fixNumber(c.formatExpr("%e * %e", e.X, e.Y), basic)
			case token.QUO:
				if isInteger(basic) {
					// cut off decimals
					shift := ">>"
					if isUnsigned(basic) {
						shift = ">>>"
					}
					return c.formatExpr(`(%1s = %2e / %3e, (%1s === %1s && %1s !== 1/0 && %1s !== -1/0) ? %1s %4s 0 : $throwRuntimeError("integer divide by zero"))`, c.newVariable("_q"), e.X, e.Y, shift)
				}
				if basic.Kind() == types.Float32 {
					return c.fixNumber(c.formatExpr("%e / %e", e.X, e.Y), basic)
				}
				return c.formatExpr("%e / %e", e.X, e.Y)
			case token.REM:
				return c.formatExpr(`(%1s = %2e %% %3e, %1s === %1s ? %1s : $throwRuntimeError("integer divide by zero"))`, c.newVariable("_r"), e.X, e.Y)
			case token.SHL, token.SHR:
				op := e.Op.String()
				if e.Op == token.SHR && isUnsigned(basic) {
					op = ">>>"
				}
				if v := c.p.Types[e.Y].Value; v != nil {
					i, _ := constant.Uint64Val(constant.ToInt(v))
					if i >= 32 {
						return c.formatExpr("0")
					}
					return c.fixNumber(c.formatExpr("%e %s %s", e.X, op, strconv.FormatUint(i, 10)), basic)
				}
				if e.Op == token.SHR && !isUnsigned(basic) {
					return c.fixNumber(c.formatParenExpr("%e >> $min(%f, 31)", e.X, e.Y), basic)
				}
				y := c.newVariable("y")
				return c.fixNumber(c.formatExpr("(%s = %f, %s < 32 ? (%e %s %s) : 0)", y, e.Y, y, e.X, op, y), basic)
			case token.AND, token.OR:
				if isUnsigned(basic) {
					return c.formatParenExpr("(%e %t %e) >>> 0", e.X, e.Op, e.Y)
				}
				return c.formatParenExpr("%e %t %e", e.X, e.Op, e.Y)
			case token.AND_NOT:
				return c.fixNumber(c.formatParenExpr("%e & ~%e", e.X, e.Y), basic)
			case token.XOR:
				return c.fixNumber(c.formatParenExpr("%e ^ %e", e.X, e.Y), basic)
			default:
				panic(e.Op)
			}
		}

		switch e.Op {
		case token.ADD, token.LSS, token.LEQ, token.GTR, token.GEQ:
			return c.formatExpr("%e %t %e", e.X, e.Op, e.Y)
		case token.LAND:
			if c.Blocking[e.Y] {
				skipCase := c.caseCounter
				c.caseCounter++
				resultVar := c.newVariable("_v")
				c.Printf("if (!(%s)) { %s = false; $s = %d; continue s; }", c.translateExpr(e.X), resultVar, skipCase)
				c.Printf("%s = %s; case %d:", resultVar, c.translateExpr(e.Y), skipCase)
				return c.formatExpr("%s", resultVar)
			}
			return c.formatExpr("%e && %e", e.X, e.Y)
		case token.LOR:
			if c.Blocking[e.Y] {
				skipCase := c.caseCounter
				c.caseCounter++
				resultVar := c.newVariable("_v")
				c.Printf("if (%s) { %s = true; $s = %d; continue s; }", c.translateExpr(e.X), resultVar, skipCase)
				c.Printf("%s = %s; case %d:", resultVar, c.translateExpr(e.Y), skipCase)
				return c.formatExpr("%s", resultVar)
			}
			return c.formatExpr("%e || %e", e.X, e.Y)
		case token.EQL:
			switch u := t.Underlying().(type) {
			case *types.Array, *types.Struct:
				return c.formatExpr("$equal(%e, %e, %s)", e.X, e.Y, c.typeName(t))
			case *types.Interface:
				return c.formatExpr("$interfaceIsEqual(%s, %s)", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t))
			case *types.Pointer:
				if _, ok := u.Elem().Underlying().(*types.Array); ok {
					return c.formatExpr("$equal(%s, %s, %s)", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t), c.typeName(u.Elem()))
				}
			case *types.Basic:
				if isBoolean(u) {
					if b, ok := analysis.BoolValue(e.X, c.p.Info.Info); ok && b {
						return c.translateExpr(e.Y)
					}
					if b, ok := analysis.BoolValue(e.Y, c.p.Info.Info); ok && b {
						return c.translateExpr(e.X)
					}
				}
			}
			return c.formatExpr("%s === %s", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t))
		default:
			panic(e.Op)
		}

	case *ast.ParenExpr:
		return c.formatParenExpr("%e", e.X)

	case *ast.IndexExpr:
		switch t := c.p.TypeOf(e.X).Underlying().(type) {
		case *types.Array, *types.Pointer:
			pattern := rangeCheck("%1e[%2f]", c.p.Types[e.Index].Value != nil, true)
			if _, ok := t.(*types.Pointer); ok { // check pointer for nix (attribute getter causes a panic)
				pattern = `(%1e.nilCheck, ` + pattern + `)`
			}
			return c.formatExpr(pattern, e.X, e.Index)
		case *types.Slice:
			return c.formatExpr(rangeCheck("%1e.$array[%1e.$offset + %2f]", c.p.Types[e.Index].Value != nil, false), e.X, e.Index)
		case *types.Map:
			if typesutil.IsJsObject(c.p.TypeOf(e.Index)) {
				c.p.errList = append(c.p.errList, types.Error{Fset: c.p.fileSet, Pos: e.Index.Pos(), Msg: "cannot use js.Object as map key"})
			}
			key := fmt.Sprintf("%s.keyFor(%s)", c.typeName(t.Key()), c.translateImplicitConversion(e.Index, t.Key()))
			if _, isTuple := exprType.(*types.Tuple); isTuple {
				return c.formatExpr(`(%1s = %2e[%3s], %1s !== undefined ? [%1s.v, true] : [%4e, false])`, c.newVariable("_entry"), e.X, key, c.zeroValue(t.Elem()))
			}
			return c.formatExpr(`(%1s = %2e[%3s], %1s !== undefined ? %1s.v : %4e)`, c.newVariable("_entry"), e.X, key, c.zeroValue(t.Elem()))
		case *types.Basic:
			return c.formatExpr("%e.charCodeAt(%f)", e.X, e.Index)
		default:
			panic(fmt.Sprintf("Unhandled IndexExpr: %T\n", t))
		}

	case *ast.SliceExpr:
		if b, isBasic := c.p.TypeOf(e.X).Underlying().(*types.Basic); isBasic && isString(b) {
			switch {
			case e.Low == nil && e.High == nil:
				return c.translateExpr(e.X)
			case e.Low == nil:
				return c.formatExpr("%e.substring(0, %f)", e.X, e.High)
			case e.High == nil:
				return c.formatExpr("%e.substring(%f)", e.X, e.Low)
			default:
				return c.formatExpr("%e.substring(%f, %f)", e.X, e.Low, e.High)
			}
		}
		slice := c.translateConversionToSlice(e.X, exprType)
		switch {
		case e.Low == nil && e.High == nil:
			return c.formatExpr("%s", slice)
		case e.Low == nil:
			if e.Max != nil {
				return c.formatExpr("$subslice(%s, 0, %f, %f)", slice, e.High, e.Max)
			}
			return c.formatExpr("$subslice(%s, 0, %f)", slice, e.High)
		case e.High == nil:
			return c.formatExpr("$subslice(%s, %f)", slice, e.Low)
		default:
			if e.Max != nil {
				return c.formatExpr("$subslice(%s, %f, %f, %f)", slice, e.Low, e.High, e.Max)
			}
			return c.formatExpr("$subslice(%s, %f, %f)", slice, e.Low, e.High)
		}

	case *ast.SelectorExpr:
		sel, ok := c.p.SelectionOf(e)
		if !ok {
			// qualified identifier
			return c.formatExpr("%s", c.objectName(obj))
		}

		switch sel.Kind() {
		case types.FieldVal:
			fields, jsTag := c.translateSelection(sel, e.Pos())
			if jsTag != "" {
				if _, ok := sel.Type().(*types.Signature); ok {
					return c.formatExpr("$internalize(%1e.%2s.%3s, %4s, %1e.%2s)", e.X, strings.Join(fields, "."), jsTag, c.typeName(sel.Type()))
				}
				return c.internalize(c.formatExpr("%e.%s.%s", e.X, strings.Join(fields, "."), jsTag), sel.Type())
			}
			return c.formatExpr("%e.%s", e.X, strings.Join(fields, "."))
		case types.MethodVal:
			return c.formatExpr(`$methodVal(%s, "%s")`, c.makeReceiver(e), sel.Obj().(*types.Func).Name())
		case types.MethodExpr:
			if !sel.Obj().Exported() {
				c.p.dependencies[sel.Obj()] = true
			}
			if _, ok := sel.Recv().Underlying().(*types.Interface); ok {
				return c.formatExpr(`$ifaceMethodExpr("%s")`, sel.Obj().(*types.Func).Name())
			}
			return c.formatExpr(`$methodExpr(%s, "%s")`, c.typeName(sel.Recv()), sel.Obj().(*types.Func).Name())
		default:
			panic(fmt.Sprintf("unexpected sel.Kind(): %T", sel.Kind()))
		}

	case *ast.CallExpr:
		plainFun := astutil.RemoveParens(e.Fun)

		if astutil.IsTypeExpr(plainFun, c.p.Info.Info) {
			return c.formatExpr("%s", c.translateConversion(e.Args[0], c.p.TypeOf(plainFun)))
		}

		sig := c.p.TypeOf(plainFun).Underlying().(*types.Signature)

		switch f := plainFun.(type) {
		case *ast.Ident:
			obj := c.p.Uses[f]
			if o, ok := obj.(*types.Builtin); ok {
				return c.translateBuiltin(o.Name(), sig, e.Args, e.Ellipsis.IsValid())
			}
			if typesutil.IsJsPackage(obj.Pkg()) && obj.Name() == "InternalObject" {
				return c.translateExpr(e.Args[0])
			}
			return c.translateCall(e, sig, c.translateExpr(f))

		case *ast.SelectorExpr:
			sel, ok := c.p.SelectionOf(f)
			if !ok {
				// qualified identifier
				obj := c.p.Uses[f.Sel]
				if typesutil.IsJsPackage(obj.Pkg()) {
					switch obj.Name() {
					case "Debugger":
						return c.formatExpr("debugger")
					case "InternalObject":
						return c.translateExpr(e.Args[0])
					}
				}
				return c.translateCall(e, sig, c.translateExpr(f))
			}

			externalizeExpr := func(e ast.Expr) string {
				t := c.p.TypeOf(e)
				if types.Identical(t, types.Typ[types.UntypedNil]) {
					return "null"
				}
				return c.externalize(c.translateExpr(e).String(), t)
			}
			externalizeArgs := func(args []ast.Expr) string {
				s := make([]string, len(args))
				for i, arg := range args {
					s[i] = externalizeExpr(arg)
				}
				return strings.Join(s, ", ")
			}

			switch sel.Kind() {
			case types.MethodVal:
				recv := c.makeReceiver(f)
				declaredFuncRecv := sel.Obj().(*types.Func).Type().(*types.Signature).Recv().Type()
				if typesutil.IsJsObject(declaredFuncRecv) {
					globalRef := func(id string) string {
						if recv.String() == "$global" && id[0] == '$' && len(id) > 1 {
							return id
						}
						return recv.String() + "." + id
					}
					switch sel.Obj().Name() {
					case "Get":
						if id, ok := c.identifierConstant(e.Args[0]); ok {
							return c.formatExpr("%s", globalRef(id))
						}
						return c.formatExpr("%s[$externalize(%e, $String)]", recv, e.Args[0])
					case "Set":
						if id, ok := c.identifierConstant(e.Args[0]); ok {
							return c.formatExpr("%s = %s", globalRef(id), externalizeExpr(e.Args[1]))
						}
						return c.formatExpr("%s[$externalize(%e, $String)] = %s", recv, e.Args[0], externalizeExpr(e.Args[1]))
					case "Delete":
						return c.formatExpr("delete %s[$externalize(%e, $String)]", recv, e.Args[0])
					case "Length":
						return c.formatExpr("$parseInt(%s.length)", recv)
					case "Index":
						return c.formatExpr("%s[%e]", recv, e.Args[0])
					case "SetIndex":
						return c.formatExpr("%s[%e] = %s", recv, e.Args[0], externalizeExpr(e.Args[1]))
					case "Call":
						if id, ok := c.identifierConstant(e.Args[0]); ok {
							if e.Ellipsis.IsValid() {
								objVar := c.newVariable("obj")
								return c.formatExpr("(%s = %s, %s.%s.apply(%s, %s))", objVar, recv, objVar, id, objVar, externalizeExpr(e.Args[1]))
							}
							return c.formatExpr("%s(%s)", globalRef(id), externalizeArgs(e.Args[1:]))
						}
						if e.Ellipsis.IsValid() {
							objVar := c.newVariable("obj")
							return c.formatExpr("(%s = %s, %s[$externalize(%e, $String)].apply(%s, %s))", objVar, recv, objVar, e.Args[0], objVar, externalizeExpr(e.Args[1]))
						}
						return c.formatExpr("%s[$externalize(%e, $String)](%s)", recv, e.Args[0], externalizeArgs(e.Args[1:]))
					case "Invoke":
						if e.Ellipsis.IsValid() {
							return c.formatExpr("%s.apply(undefined, %s)", recv, externalizeExpr(e.Args[0]))
						}
						return c.formatExpr("%s(%s)", recv, externalizeArgs(e.Args))
					case "New":
						if e.Ellipsis.IsValid() {
							return c.formatExpr("new ($global.Function.prototype.bind.apply(%s, [undefined].concat(%s)))", recv, externalizeExpr(e.Args[0]))
						}
						return c.formatExpr("new (%s)(%s)", recv, externalizeArgs(e.Args))
					case "Bool":
						return c.internalize(recv, types.Typ[types.Bool])
					case "String":
						return c.internalize(recv, types.Typ[types.String])
					case "Int":
						return c.internalize(recv, types.Typ[types.Int])
					case "Int64":
						return c.internalize(recv, types.Typ[types.Int64])
					case "Uint64":
						return c.internalize(recv, types.Typ[types.Uint64])
					case "Float":
						return c.internalize(recv, types.Typ[types.Float64])
					case "Interface":
						return c.internalize(recv, types.NewInterface(nil, nil))
					case "Unsafe":
						return recv
					default:
						panic("Invalid js package object: " + sel.Obj().Name())
					}
				}

				methodName := sel.Obj().Name()
				if reservedKeywords[methodName] {
					methodName += "$"
				}
				return c.translateCall(e, sig, c.formatExpr("%s.%s", recv, methodName))

			case types.FieldVal:
				fields, jsTag := c.translateSelection(sel, f.Pos())
				if jsTag != "" {
					call := c.formatExpr("%e.%s.%s(%s)", f.X, strings.Join(fields, "."), jsTag, externalizeArgs(e.Args))
					switch sig.Results().Len() {
					case 0:
						return call
					case 1:
						return c.internalize(call, sig.Results().At(0).Type())
					default:
						c.p.errList = append(c.p.errList, types.Error{Fset: c.p.fileSet, Pos: f.Pos(), Msg: "field with js tag can not have func type with multiple results"})
					}
				}
				return c.translateCall(e, sig, c.formatExpr("%e.%s", f.X, strings.Join(fields, ".")))

			case types.MethodExpr:
				return c.translateCall(e, sig, c.translateExpr(f))

			default:
				panic(fmt.Sprintf("unexpected sel.Kind(): %T", sel.Kind()))
			}
		default:
			return c.translateCall(e, sig, c.translateExpr(plainFun))
		}

	case *ast.StarExpr:
		if typesutil.IsJsObject(c.p.TypeOf(e.X)) {
			return c.formatExpr("new $jsObjectPtr(%e)", e.X)
		}
		if c1, isCall := e.X.(*ast.CallExpr); isCall && len(c1.Args) == 1 {
			if c2, isCall := c1.Args[0].(*ast.CallExpr); isCall && len(c2.Args) == 1 && types.Identical(c.p.TypeOf(c2.Fun), types.Typ[types.UnsafePointer]) {
				if unary, isUnary := c2.Args[0].(*ast.UnaryExpr); isUnary && unary.Op == token.AND {
					return c.translateExpr(unary.X) // unsafe conversion
				}
			}
		}
		switch exprType.Underlying().(type) {
		case *types.Struct, *types.Array:
			return c.translateExpr(e.X)
		}
		return c.formatExpr("%e.$get()", e.X)

	case *ast.TypeAssertExpr:
		if e.Type == nil {
			return c.translateExpr(e.X)
		}
		t := c.p.TypeOf(e.Type)
		if _, isTuple := exprType.(*types.Tuple); isTuple {
			return c.formatExpr("$assertType(%e, %s, true)", e.X, c.typeName(t))
		}
		return c.formatExpr("$assertType(%e, %s)", e.X, c.typeName(t))

	case *ast.Ident:
		if e.Name == "_" {
			panic("Tried to translate underscore identifier.")
		}
		switch o := obj.(type) {
		case *types.Var, *types.Const:
			return c.formatExpr("%s", c.objectName(o))
		case *types.Func:
			return c.formatExpr("%s", c.objectName(o))
		case *types.TypeName:
			return c.formatExpr("%s", c.typeName(o.Type()))
		case *types.Nil:
			if typesutil.IsJsObject(exprType) {
				return c.formatExpr("null")
			}
			switch t := exprType.Underlying().(type) {
			case *types.Basic:
				if t.Kind() != types.UnsafePointer {
					panic("unexpected basic type")
				}
				return c.formatExpr("0")
			case *types.Slice, *types.Pointer:
				return c.formatExpr("%s.nil", c.typeName(exprType))
			case *types.Chan:
				return c.formatExpr("$chanNil")
			case *types.Map:
				return c.formatExpr("false")
			case *types.Interface:
				return c.formatExpr("$ifaceNil")
			case *types.Signature:
				return c.formatExpr("$throwNilPointerError")
			default:
				panic(fmt.Sprintf("unexpected type: %T", t))
			}
		default:
			panic(fmt.Sprintf("Unhandled object: %T\n", o))
		}

	case *this:
		if isWrapped(c.p.TypeOf(e)) {
			return c.formatExpr("this.$val")
		}
		return c.formatExpr("this")

	case nil:
		return c.formatExpr("")

	default:
		panic(fmt.Sprintf("Unhandled expression: %T\n", e))

	}
}