예제 #1
0
파일: export.go 프로젝트: 2722/lantern
func (p *exporter) field(f *types.Var) {
	// anonymous fields have "" name
	name := ""
	if !f.Anonymous() {
		name = f.Name()
	}

	// qualifiedName will always emit the field package for
	// anonymous fields because "" is not an exported name.
	p.qualifiedName(f.Pkg(), name)
	p.typ(f.Type())
}
예제 #2
0
func (tr *Transformer) matchWildcard(xobj *types.Var, y ast.Expr) bool {
	name := xobj.Name()

	if tr.verbose {
		fmt.Fprintf(os.Stderr, "%s: wildcard %s -> %s?: ",
			tr.fset.Position(y.Pos()), name, astString(tr.fset, y))
	}

	// Check that y is assignable to the declared type of the param.
	yt := tr.info.TypeOf(y)
	if yt == nil {
		// y has no type.
		// Perhaps it is an *ast.Ellipsis in [...]T{}, or
		// an *ast.KeyValueExpr in T{k: v}.
		// Clearly these pseudo-expressions cannot match a
		// wildcard, but it would nice if we had a way to ignore
		// the difference between T{v} and T{k:v} for structs.
		return false
	}
	if !types.AssignableTo(yt, xobj.Type()) {
		if tr.verbose {
			fmt.Fprintf(os.Stderr, "%s not assignable to %s\n", yt, xobj.Type())
		}
		return false
	}

	// A wildcard matches any expression.
	// If it appears multiple times in the pattern, it must match
	// the same expression each time.
	if old, ok := tr.env[name]; ok {
		// found existing binding
		tr.allowWildcards = false
		r := tr.matchExpr(old, y)
		if tr.verbose {
			fmt.Fprintf(os.Stderr, "%t secondary match, primary was %s\n",
				r, astString(tr.fset, old))
		}
		tr.allowWildcards = true
		return r
	}

	if tr.verbose {
		fmt.Fprintf(os.Stderr, "primary match\n")
	}

	tr.env[name] = y // record binding
	return true
}
예제 #3
0
파일: check.go 프로젝트: rakyll/GCSolutions
// checkStructField checks that the field renaming will not cause
// conflicts at its declaration, or ambiguity or changes to any selection.
func (e *Export) checkStructField(from *types.Var, to string) {
	// Check that the struct declaration is free of field conflicts,
	// and field/method conflicts.
	t := getEnclosingStruct(from)
	if t != t.Underlying() {
		// This struct is also a named type.
		// We must check for direct (non-promoted) field/field
		// and method/field conflicts.
		_, indices, _ := types.LookupFieldOrMethod(t, true, e.u.pkgInfo.Pkg, to)
		if len(indices) == 1 {
			e.Conflicting = true
			return
		}
	} else {
		// This struct is not a named type.
		// We need only check for direct (non-promoted) field/field conflicts.
		T := t.Underlying().(*types.Struct)
		for i := 0; i < T.NumFields(); i++ {
			if prev := T.Field(i); prev.Name() == to {
				e.Conflicting = true
				return
			}
		}
	}

	// Renaming an anonymous field requires renaming the type too. e.g.
	// 	print(s.T)       // if we rename T to U,
	// 	type T int       // this and
	// 	var s struct {T} // this must change too.
	if from.Anonymous() {
		if named, ok := from.Type().(*types.Named); ok {
			e.check(named.Obj(), to)
		} else if named, ok := deref(from.Type()).(*types.Named); ok {
			e.check(named.Obj(), to)
		}
	}

	// Check integrity of existing (field and method) selections.
	e.checkSelections(from, to)
}
예제 #4
0
파일: source_test.go 프로젝트: 2722/lantern
func checkVarValue(t *testing.T, prog *ssa.Program, pkg *ssa.Package, ref []ast.Node, obj *types.Var, expKind string, wantAddr bool) {
	// The prefix of all assertions messages.
	prefix := fmt.Sprintf("VarValue(%s @ L%d)",
		obj, prog.Fset.Position(ref[0].Pos()).Line)

	v, gotAddr := prog.VarValue(obj, pkg, ref)

	// Kind is the concrete type of the ssa Value.
	gotKind := "nil"
	if v != nil {
		gotKind = fmt.Sprintf("%T", v)[len("*ssa."):]
	}

	// fmt.Printf("%s = %v (kind %q; expect %q) wantAddr=%t gotAddr=%t\n", prefix, v, gotKind, expKind, wantAddr, gotAddr) // debugging

	// Check the kinds match.
	// "nil" indicates expected failure (e.g. optimized away).
	if expKind != gotKind {
		t.Errorf("%s concrete type == %s, want %s", prefix, gotKind, expKind)
	}

	// Check the types match.
	// If wantAddr, the expected type is the object's address.
	if v != nil {
		expType := obj.Type()
		if wantAddr {
			expType = types.NewPointer(expType)
			if !gotAddr {
				t.Errorf("%s: got value, want address", prefix)
			}
		} else if gotAddr {
			t.Errorf("%s: got address, want value", prefix)
		}
		if !types.Identical(v.Type(), expType) {
			t.Errorf("%s.Type() == %s, want %s", prefix, v.Type(), expType)
		}
	}
}
예제 #5
0
func (tr *Transformer) matchWildcard(xobj *types.Var, y ast.Expr) bool {
	name := xobj.Name()

	if tr.verbose {
		fmt.Fprintf(os.Stderr, "%s: wildcard %s -> %s?: ",
			tr.fset.Position(y.Pos()), name, astString(tr.fset, y))
	}

	// Check that y is assignable to the declared type of the param.
	if yt := tr.info.TypeOf(y); !types.AssignableTo(yt, xobj.Type()) {
		if tr.verbose {
			fmt.Fprintf(os.Stderr, "%s not assignable to %s\n", yt, xobj.Type())
		}
		return false
	}

	// A wildcard matches any expression.
	// If it appears multiple times in the pattern, it must match
	// the same expression each time.
	if old, ok := tr.env[name]; ok {
		// found existing binding
		tr.allowWildcards = false
		r := tr.matchExpr(old, y)
		if tr.verbose {
			fmt.Fprintf(os.Stderr, "%t secondary match, primary was %s\n",
				r, astString(tr.fset, old))
		}
		tr.allowWildcards = true
		return r
	}

	if tr.verbose {
		fmt.Fprintf(os.Stderr, "primary match\n")
	}

	tr.env[name] = y // record binding
	return true
}
예제 #6
0
파일: check.go 프로젝트: rakyll/GCSolutions
// checkStructField checks that the field renaming will not cause
// conflicts at its declaration, or ambiguity or changes to any selection.
func (r *Unexporter) checkStructField(objsToUpdate map[types.Object]string, from *types.Var, to string) {
	// Check that the struct declaration is free of field conflicts,
	// and field/method conflicts.

	// go/types offers no easy way to get from a field (or interface
	// method) to its declaring struct (or interface), so we must
	// ascend the AST.
	info, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
	// path matches this pattern:
	// [Ident SelectorExpr? StarExpr? Field FieldList StructType ParenExpr* ... File]

	// Ascend to FieldList.
	var i int
	for {
		if _, ok := path[i].(*ast.FieldList); ok {
			break
		}
		i++
	}
	i++
	tStruct := path[i].(*ast.StructType)
	i++
	// Ascend past parens (unlikely).
	for {
		_, ok := path[i].(*ast.ParenExpr)
		if !ok {
			break
		}
		i++
	}
	if spec, ok := path[i].(*ast.TypeSpec); ok {
		// This struct is also a named type.
		// We must check for direct (non-promoted) field/field
		// and method/field conflicts.
		named := info.Defs[spec.Name].Type()
		prev, indices, _ := types.LookupFieldOrMethod(named, true, info.Pkg, to)
		if len(indices) == 1 {
			r.warn(from,
				r.errorf(from.Pos(), "renaming this field %q to %q",
					from.Name(), to),
				r.errorf(prev.Pos(), "\twould conflict with this %s",
					objectKind(prev)))
			return // skip checkSelections to avoid redundant errors
		}
	} else {
		// This struct is not a named type.
		// We need only check for direct (non-promoted) field/field conflicts.
		t := info.Types[tStruct].Type.Underlying().(*types.Struct)
		for i := 0; i < t.NumFields(); i++ {
			if prev := t.Field(i); prev.Name() == to {
				r.warn(from,
					r.errorf(from.Pos(), "renaming this field %q to %q",
						from.Name(), to),
					r.errorf(prev.Pos(), "\twould conflict with this field"))
				return // skip checkSelections to avoid redundant errors
			}
		}
	}

	// Renaming an anonymous field requires renaming the type too. e.g.
	// 	print(s.T)       // if we rename T to U,
	// 	type T int       // this and
	// 	var s struct {T} // this must change too.
	if from.Anonymous() {
		if named, ok := from.Type().(*types.Named); ok {
			r.check(objsToUpdate, named.Obj(), to)
		} else if named, ok := deref(from.Type()).(*types.Named); ok {
			r.check(objsToUpdate, named.Obj(), to)
		}
	}

	// Check integrity of existing (field and method) selections.
	r.checkSelections(objsToUpdate, from, to)
}
예제 #7
0
파일: vars.go 프로젝트: justinfx/gopy
func newVar(v *types.Var) *Var {
	return &Var{
		Var:   v,
		dtype: getTypedesc(v.Type()),
	}
}
예제 #8
0
파일: wrappers.go 프로젝트: 2722/lantern
// makeWrapper returns a synthetic method that delegates to the
// declared method denoted by meth.Obj(), first performing any
// necessary pointer indirections or field selections implied by meth.
//
// The resulting method's receiver type is meth.Recv().
//
// This function is versatile but quite subtle!  Consider the
// following axes of variation when making changes:
//   - optional receiver indirection
//   - optional implicit field selections
//   - meth.Obj() may denote a concrete or an interface method
//   - the result may be a thunk or a wrapper.
//
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
//
func makeWrapper(prog *Program, sel *types.Selection) *Function {
	obj := sel.Obj().(*types.Func)       // the declared function
	sig := sel.Type().(*types.Signature) // type of this wrapper

	var recv *types.Var // wrapper's receiver or thunk's params[0]
	name := obj.Name()
	var description string
	var start int // first regular param
	if sel.Kind() == types.MethodExpr {
		name += "$thunk"
		description = "thunk"
		recv = sig.Params().At(0)
		start = 1
	} else {
		description = "wrapper"
		recv = sig.Recv()
	}

	description = fmt.Sprintf("%s for %s", description, sel.Obj())
	if prog.mode&LogSource != 0 {
		defer logStack("make %s to (%s)", description, recv.Type())()
	}
	fn := &Function{
		name:      name,
		method:    sel,
		object:    obj,
		Signature: sig,
		Synthetic: description,
		Prog:      prog,
		pos:       obj.Pos(),
	}
	fn.startBody()
	fn.addSpilledParam(recv)
	createParams(fn, start)

	indices := sel.Index()

	var v Value = fn.Locals[0] // spilled receiver
	if isPointer(sel.Recv()) {
		v = emitLoad(fn, v)

		// For simple indirection wrappers, perform an informative nil-check:
		// "value method (T).f called using nil *T pointer"
		if len(indices) == 1 && !isPointer(recvType(obj)) {
			var c Call
			c.Call.Value = &Builtin{
				name: "ssa:wrapnilchk",
				sig: types.NewSignature(nil,
					types.NewTuple(anonVar(sel.Recv()), anonVar(tString), anonVar(tString)),
					types.NewTuple(anonVar(sel.Recv())), false),
			}
			c.Call.Args = []Value{
				v,
				stringConst(deref(sel.Recv()).String()),
				stringConst(sel.Obj().Name()),
			}
			c.setType(v.Type())
			v = fn.emit(&c)
		}
	}

	// Invariant: v is a pointer, either
	//   value of *A receiver param, or
	// address of  A spilled receiver.

	// We use pointer arithmetic (FieldAddr possibly followed by
	// Load) in preference to value extraction (Field possibly
	// preceded by Load).

	v = emitImplicitSelections(fn, v, indices[:len(indices)-1])

	// Invariant: v is a pointer, either
	//   value of implicit *C field, or
	// address of implicit  C field.

	var c Call
	if r := recvType(obj); !isInterface(r) { // concrete method
		if !isPointer(r) {
			v = emitLoad(fn, v)
		}
		c.Call.Value = prog.declaredFunc(obj)
		c.Call.Args = append(c.Call.Args, v)
	} else {
		c.Call.Method = obj
		c.Call.Value = emitLoad(fn, v)
	}
	for _, arg := range fn.Params[1:] {
		c.Call.Args = append(c.Call.Args, arg)
	}
	emitTailCall(fn, &c)
	fn.finishBody()
	return fn
}
예제 #9
0
파일: vars.go 프로젝트: kellrott/gopy
func newVarFrom(p *Package, v *types.Var) *Var {
	return newVar(p, v.Type(), v.Name(), v.Name(), p.getDoc("", v))
}
예제 #10
0
파일: export.go 프로젝트: 2722/lantern
func (p *exporter) param(v *types.Var) {
	p.string(v.Name())
	p.typ(v.Type())
}