func Test_UndoRedo(t *testing.T) { u, _, f := initial() tr1 := u.AddTransition("transition1", state.FactorEquals{f, "a"}, state.Spontaneous{0}, "AB happened.", map[*state.Factor]state.Value{f: "b"}) tr2 := u.AddTransition("transition2", state.FactorEquals{f, "b"}, state.Spontaneous{0}, "BC happened.", map[*state.Factor]state.Value{f: "c"}) s := u.Instantiate() assert(t, "No undo before do", false, nil != s.Now().Past()) assert(t, "No redo before do", false, nil != s.Now().Future()) tr1.Apply(s) tr2.Apply(s) assert(t, "Can undo after do", true, nil != s.Now().Past()) assert(t, "Pre-undo", state.Value("c"), s.Get(f)) assert(t, "Redo before mid", false, nil != s.Now().Future()) s.Goto(s.Now().Past()) assert(t, "Undo 1", state.Value("b"), s.Get(f)) assert(t, "Redo after mid", true, nil != s.Now().Future()) s.Goto(s.Now().Past()) assert(t, "Undo 2", state.Value("a"), s.Get(f)) s.Goto(s.Now().Future()) assert(t, "Redo", state.Value("b"), s.Get(f)) }
func Test_SpontaneousNot(t *testing.T) { u, r, f := initial() u.AddTransition("a-transition", state.FactorEquals{f, "a"}, state.Spontaneous{0}, "", map[*state.Factor]state.Value{f: "b"}) s := u.Instantiate() assert(t, "Initial state", state.Value("a"), s.Get(f)) s.RunSpontaneous(r) assert(t, "Spontaneous didn't happen", state.Value("a"), s.Get(f)) }
func Bool() state.BoolExpr { if current_token == '(' { Match('(') exp := Conjunction() Match(')') return exp } else { fac := u.FindFactor(FactorName()) switch current_token { // case '<': // Match('<') // if current_token == '=' { // Match('=') // } // if current_token == INT { // Match(INT) // } else { // FactorName() // } // case '>': // Match('>') // if current_token == '=' { // Match('=') // } // if current_token == INT { // Match(INT) // } else { // FactorName() // } case '=': Match('=') if current_token == INT { exp := state.FactorEquals{fac, state.Value(strconv.Itoa(current_int))} Match(INT) return exp } else { exp := state.FactorEquals{fac, state.Value(current_string)} Match(STRING) return exp } } } return nil }
func FactorTransition() (*state.Factor, state.Value) { fac := u.FindFactor(FactorName()) var val state.Value if current_token == '-' { Match('-') if current_token == '>' { Match('>') val = state.Value(FactorValue()) } // else { // Match(INT) // } // } else { // Match('+') // if current_token == INT { // Match(INT) // } } return fac, val }
func main() { flag.Parse() runtime.GOMAXPROCS(*procs) randObj := rand.New(rand.NewSource(42 + int64(*forceLeader))) //zipf := rand.NewZipf(randObj, *s, *v, uint64(*reqsNb / *rounds + *eps)) zipf := ycsbzipf.NewZipf(int(*reqsNb / *rounds + *eps), randObj) if *conflicts > 100 { log.Fatalf("Conflicts percentage must be between 0 and 100.\n") } if *writes > 100 { log.Fatalf("Write percentage cannot be higher than 100.\n") } master, err := rpc.DialHTTP("tcp", fmt.Sprintf("%s:%d", *masterAddr, *masterPort)) if err != nil { log.Fatalf("Error connecting to master\n") } rlReply := new(masterproto.GetReplicaListReply) err = master.Call("Master.GetReplicaList", new(masterproto.GetReplicaListArgs), rlReply) if err != nil { log.Fatalf("Error making the GetReplicaList RPC") } N = len(rlReply.ReplicaList) if *forcedN > N { log.Fatalf("Cannot connect to more than the total number of replicas. -N parameter too high.\n") } if *forcedN > 0 { N = *forcedN } servers := make([]net.Conn, N) readers := make([]*bufio.Reader, N) writers := make([]*bufio.Writer, N) rarray = make([]int, *reqsNb / *rounds + *eps) karrays := make([][]int64, N) iarray := make([]int, *reqsNb / *rounds + *eps) put := make([]bool, *reqsNb / *rounds + *eps) perReplicaCount := make([]int, N) test := make([]int, *reqsNb / *rounds + *eps) for j := 0; j < N; j++ { karrays[j] = make([]int64, *reqsNb / *rounds + *eps) for i := 0; i < len(karrays[j]); i++ { karrays[j][i] = int64(i) } robj := rand.New(rand.NewSource(442 + int64(j))) randperm.Permute(karrays[j], robj) } for i := 0; i < len(rarray); i++ { r := rand.Intn(N) rarray[i] = r if i < *reqsNb / *rounds { perReplicaCount[r]++ } if *conflicts >= 0 { r = rand.Intn(100) if r < *conflicts { iarray[i] = 0 } else { iarray[i] = i } } else { iarray[i] = int(zipf.NextInt64()) test[karrays[rarray[i]][iarray[i]]]++ } r = rand.Intn(100) if r < *writes { put[i] = true } else { put[i] = false } } if *conflicts >= 0 { fmt.Println("Uniform distribution") } else { fmt.Println("Zipfian distribution:") //fmt.Println(test[0:100]) } for i := 0; i < N; i++ { var err error servers[i], err = net.Dial("tcp", rlReply.ReplicaList[i]) if err != nil { log.Printf("Error connecting to replica %d\n", i) } readers[i] = bufio.NewReader(servers[i]) writers[i] = bufio.NewWriter(servers[i]) } successful = make([]int, N) local = make([]int, N) leader := 0 if *noLeader == false && *forceLeader < 0 { reply := new(masterproto.GetLeaderReply) if err = master.Call("Master.GetLeader", new(masterproto.GetLeaderArgs), reply); err != nil { log.Fatalf("Error making the GetLeader RPC\n") } leader = reply.LeaderId log.Printf("The leader is replica %d\n", leader) } else if *forceLeader > 0 { leader = *forceLeader log.Printf("My leader is replica %d\n", leader) } var id int32 = 0 done := make(chan bool, N) args := genericsmrproto.Propose{id, state.Command{state.PUT, 0, 0}, 0} before_total := time.Now() for j := 0; j < *rounds; j++ { n := *reqsNb / *rounds if *check { rsp = make([]bool, n) for j := 0; j < n; j++ { rsp[j] = false } } if *noLeader { for i := 0; i < N; i++ { go waitReplies(readers, i, perReplicaCount[i], done) } } else { go waitReplies(readers, leader, n, done) } before := time.Now() for i := 0; i < n+*eps; i++ { dlog.Printf("Sending proposal %d\n", id) args.CommandId = id if put[i] { args.Command.Op = state.PUT } else { args.Command.Op = state.GET } if !*fast && *noLeader { leader = rarray[i] } args.Command.K = state.Key(karrays[leader][iarray[i]]) args.Command.V = state.Value(i) + 1 //args.Timestamp = time.Now().UnixNano() if !*fast { writers[leader].WriteByte(genericsmrproto.PROPOSE) args.Marshal(writers[leader]) } else { //send to everyone for rep := 0; rep < N; rep++ { writers[rep].WriteByte(genericsmrproto.PROPOSE) args.Marshal(writers[rep]) writers[rep].Flush() } } //fmt.Println("Sent", id) id++ if i%100 == 0 { for i := 0; i < N; i++ { writers[i].Flush() } } } for i := 0; i < N; i++ { writers[i].Flush() } err := false if *noLeader { for i := 0; i < N; i++ { e := <-done err = e || err } } else { err = <-done } after := time.Now() fmt.Printf("Round took %v\n", after.Sub(before)) if *check { for j := 0; j < n; j++ { if !rsp[j] { fmt.Println("Didn't receive", j) } } } if err { if *noLeader { N = N - 1 } else { reply := new(masterproto.GetLeaderReply) master.Call("Master.GetLeader", new(masterproto.GetLeaderArgs), reply) leader = reply.LeaderId log.Printf("New leader is replica %d\n", leader) } } } after_total := time.Now() fmt.Printf("Test took %v\n", after_total.Sub(before_total)) s := 0 ltot := 0 for _, succ := range successful { s += succ } for _, loc := range local { ltot += loc } fmt.Printf("Successful: %d\n", s) fmt.Printf("Local Reads: %d\n", ltot) for _, client := range servers { if client != nil { client.Close() } } master.Close() }
func (r *Replica) MakeInstance(q, i int, seq int32, deps [3]int32) { command := &state.Command{state.PUT, state.Key(q), state.Value(i)} r.InstanceSpace[q][i] = &Instance{command, 0, epaxosproto.COMMITTED, seq, deps, nil, 0, 0} }
func main() { flag.Parse() runtime.GOMAXPROCS(*procs) randObj := rand.New(rand.NewSource(42)) zipf := rand.NewZipf(randObj, *s, *v, uint64(*reqsNb / *rounds + *eps)) if *conflicts > 100 { log.Fatalf("Conflicts percentage must be between 0 and 100.\n") } master, err := rpc.DialHTTP("tcp", fmt.Sprintf("%s:%d", *masterAddr, *masterPort)) if err != nil { log.Fatalf("Error connecting to master\n") } rlReply := new(masterproto.GetReplicaListReply) err = master.Call("Master.GetReplicaList", new(masterproto.GetReplicaListArgs), rlReply) if err != nil { log.Fatalf("Error making the GetReplicaList RPC") } N = len(rlReply.ReplicaList) servers := make([]net.Conn, N) readers := make([]*bufio.Reader, N) writers := make([]*bufio.Writer, N) rarray = make([]int, *reqsNb / *rounds + *eps) karray := make([]int64, *reqsNb / *rounds + *eps) perReplicaCount := make([]int, N) test := make([]int, *reqsNb / *rounds + *eps) for i := 0; i < len(rarray); i++ { r := rand.Intn(N) rarray[i] = r if i < *reqsNb / *rounds { perReplicaCount[r]++ } if *conflicts >= 0 { r = rand.Intn(100) if r < *conflicts { karray[i] = 42 } else { karray[i] = int64(43 + i) } } else { karray[i] = int64(zipf.Uint64()) test[karray[i]]++ } } if *conflicts >= 0 { fmt.Println("Uniform distribution") } else { fmt.Println("Zipfian distribution:") //fmt.Println(test[0:100]) } for i := 0; i < N; i++ { var err error servers[i], err = net.Dial("tcp", rlReply.ReplicaList[i]) if err != nil { log.Printf("Error connecting to replica %d\n", i) } readers[i] = bufio.NewReader(servers[i]) writers[i] = bufio.NewWriter(servers[i]) } successful = make([]int, N) leader := 0 if *noLeader == false { reply := new(masterproto.GetLeaderReply) if err = master.Call("Master.GetLeader", new(masterproto.GetLeaderArgs), reply); err != nil { log.Fatalf("Error making the GetLeader RPC\n") } leader = reply.LeaderId log.Printf("The leader is replica %d\n", leader) } var id int32 = 0 done := make(chan bool, N) args := genericsmrproto.Propose{id, state.Command{state.PUT, 0, 0}} before_total := time.Now() for j := 0; j < *rounds; j++ { n := *reqsNb / *rounds if *check { rsp = make([]bool, n) for j := 0; j < n; j++ { rsp[j] = false } } donePrinting := make(chan bool) readings := make(chan int64, n) go printer(readings, donePrinting) if *noLeader { for i := 0; i < N; i++ { go waitReplies(readers, i, perReplicaCount[i], done, readings) } } else { go waitReplies(readers, leader, n, done, readings) } before := time.Now() for i := 0; i < n+*eps; i++ { dlog.Printf("Sending proposal %d\n", id) args.ClientId = id args.Command.K = state.Key(karray[i]) args.Command.V = state.Value(time.Now().UnixNano()) if !*fast { if *noLeader { leader = rarray[i] } writers[leader].WriteByte(genericsmrproto.PROPOSE) args.Marshal(writers[leader]) } else { //send to everyone for rep := 0; rep < N; rep++ { writers[rep].WriteByte(genericsmrproto.PROPOSE) args.Marshal(writers[rep]) writers[rep].Flush() } } //fmt.Println("Sent", id) id++ if i%*batch == 0 { for i := 0; i < N; i++ { writers[i].Flush() } if *nanosleep > 0 { time.Sleep(time.Duration(*nanosleep)) } } } for i := 0; i < N; i++ { writers[i].Flush() } err := false if *noLeader { for i := 0; i < N; i++ { e := <-done err = e || err } } else { err = <-done } after := time.Now() <-donePrinting fmt.Printf("Round took %v\n", after.Sub(before)) if *check { for j := 0; j < n; j++ { if !rsp[j] { fmt.Println("Didn't receive", j) } } } if err { if *noLeader { N = N - 1 } else { reply := new(masterproto.GetLeaderReply) master.Call("Master.GetLeader", new(masterproto.GetLeaderArgs), reply) leader = reply.LeaderId log.Printf("New leader is replica %d\n", leader) } } } after_total := time.Now() fmt.Printf("Test took %v\n", after_total.Sub(before_total)) s := 0 for _, succ := range successful { s += succ } fmt.Printf("Successful: %d\n", s) for _, client := range servers { if client != nil { client.Close() } } master.Close() }