Exemplo n.º 1
0
// findCandidates recursively locates potential node pairs (g and s) for an
// isomorphism of sub in graph and adds them to c.
func (eq *equation) findCandidates(g, s *dot.Node, sub *graphs.SubGraph) {
	// Exit early for impossible node pairs.
	if !isPotential(g, s, sub) {
		return
	}

	// Prevent infinite cycles.
	if _, ok := eq.c[s.Name]; ok {
		if eq.c[s.Name][g.Name] {
			return
		}
	}

	// Add node pair candidate.
	if _, ok := eq.c[s.Name]; !ok {
		eq.c[s.Name] = make(map[string]bool)
	} else if s.Name == sub.Entry() {
		// Locate candidates for the entry node and its immediate successors
		// exactly once.
		return
	}
	eq.c[s.Name][g.Name] = true

	// Recursively locate candidate successor pairs.
	for _, ssucc := range s.Succs {
		for _, gsucc := range g.Succs {
			eq.findCandidates(gsucc, ssucc, sub)
		}
	}
}
Exemplo n.º 2
0
// candidates locates node pair candidates for an isomorphism of sub in graph
// which starts at the entry node.
func candidates(graph *dot.Graph, entry string, sub *graphs.SubGraph) (*equation, error) {
	// Sanity checks.
	g, ok := graph.Nodes.Lookup[entry]
	if !ok {
		return nil, errutil.Newf("unable to locate entry node %q in graph", entry)
	}
	s, ok := sub.Nodes.Lookup[sub.Entry()]
	if !ok {
		panic(fmt.Sprintf("unable to locate entry node %q in sub", sub.Entry()))
	}
	if !isPotential(g, s, sub) {
		return nil, errutil.Newf("invalid entry node candidate %q; expected %d successors, got %d", g.Name, len(s.Succs), len(g.Succs))
	}

	// Locate candidate node pairs.
	eq := &equation{
		c: make(map[string]map[string]bool),
		m: make(map[string]string),
	}
	eq.findCandidates(g, s, sub)
	if len(eq.c) != len(sub.Nodes.Nodes) {
		return nil, errutil.Newf("incomplete candidate mapping; expected %d map entites, got %d", len(sub.Nodes.Nodes), len(eq.c))
	}

	return eq, nil
}
Exemplo n.º 3
0
// isPotential returns true if the graph node g is a potential candidate for the
// sub node s, and false otherwise.
func isPotential(g, s *dot.Node, sub *graphs.SubGraph) bool {
	// Verify predecessors.
	if s.Name != sub.Entry() && len(g.Preds) != len(s.Preds) {
		return false
	}
	// Verify successors.
	if s.Name != sub.Exit() && len(g.Succs) != len(s.Succs) {
		return false
	}
	return true
}
Exemplo n.º 4
0
// printMapping prints the mapping from sub node name to graph node name for an
// isomorphism of sub in graph.
func printMapping(graph *dot.Graph, sub *graphs.SubGraph, m map[string]string) {
	entry := m[sub.Entry()]
	var snames []string
	for sname := range m {
		snames = append(snames, sname)
	}
	sort.Strings(snames)
	fmt.Printf("Isomorphism of %q found at node %q:\n", sub.Name, entry)
	for _, sname := range snames {
		fmt.Printf("   %q=%q\n", sname, m[sname])
	}
}
Exemplo n.º 5
0
// Merge merges the nodes of the isomorphism of sub in graph into a single node.
// If successful it returns the name of the new node.
func Merge(graph *dot.Graph, m map[string]string, sub *graphs.SubGraph) (name string, err error) {
	var nodes []*dot.Node
	for _, gname := range m {
		node, ok := graph.Nodes.Lookup[gname]
		if !ok {
			return "", errutil.Newf("unable to locate mapping for node %q", gname)
		}
		nodes = append(nodes, node)
	}
	name = uniqName(graph, sub.Name)
	entry, ok := graph.Nodes.Lookup[m[sub.Entry()]]
	if !ok {
		return "", errutil.Newf("unable to locate mapping for entry node %q", sub.Entry())
	}
	exit, ok := graph.Nodes.Lookup[m[sub.Exit()]]
	if !ok {
		return "", errutil.Newf("unable to locate mapping for exit node %q", sub.Exit())
	}
	err = graph.Replace(nodes, name, entry, exit)
	if err != nil {
		return "", errutil.Err(err)
	}
	return name, nil
}
Exemplo n.º 6
0
// isValid returns true if m is a valid mapping, from sub node name to graph
// node name, for an isomorphism of sub in graph considering all nodes and edges
// except predecessors of entry and successors of exit.
func (eq *equation) isValid(graph *dot.Graph, sub *graphs.SubGraph) bool {
	if len(eq.m) != len(sub.Nodes.Nodes) {
		return false
	}

	// Check for duplicate values.
	if hasDup(eq.m) {
		return false
	}

	// Verify that the entry node dominates the exit node.
	entry, ok := graph.Nodes.Lookup[eq.m[sub.Entry()]]
	if !ok {
		return false
	}
	exit, ok := graph.Nodes.Lookup[eq.m[sub.Exit()]]
	if !ok {
		return false
	}
	// TODO: Figure out how to handle find the if-statement in the following graph:
	//    digraph bar {
	//       E -> F
	//       E -> J
	//       F -> G
	//       F -> E
	//       G -> I
	//       I -> E
	//       E [label="entry"]
	//       F
	//       G
	//       I
	//       J [label="exit"]
	//    }
	//
	// ref: https://github.com/decomp/decompilation/issues/172
	if !entry.Dominates(exit) {
		return false
	}

	// Sort keys to make the algorithm deterministic.
	var snames []string
	for sname := range eq.m {
		snames = append(snames, sname)
	}
	sort.Strings(snames)

	for _, sname := range snames {
		gname := eq.m[sname]
		s, ok := sub.Nodes.Lookup[sname]
		if !ok {
			panic(fmt.Sprintf("unable to locate node %q in sub", sname))
		}
		g, ok := graph.Nodes.Lookup[gname]
		if !ok {
			panic(fmt.Sprintf("unable to locate node %q in graph", gname))
		}

		// Verify predecessors.
		if s.Name != sub.Entry() {
			if len(s.Preds) != len(g.Preds) {
				return false
			}
			for _, spred := range s.Preds {
				found := false
				for _, gpred := range g.Preds {
					if gpred.Name == eq.m[spred.Name] {
						found = true
						break
					}
				}
				if !found {
					return false
				}
			}
		}

		// Verify successors.
		if s.Name != sub.Exit() {
			if len(s.Succs) != len(g.Succs) {
				return false
			}
			for _, ssucc := range s.Succs {
				found := false
				for _, gsucc := range g.Succs {
					if gsucc.Name == eq.m[ssucc.Name] {
						found = true
						break
					}
				}
				if !found {
					return false
				}
			}
		}
	}

	// Isomorphism found!
	return true
}