Exemplo n.º 1
0
func (compiler *compiler) compile(filenames []string, importpath string) (m *Module, err error) {
	buildctx, err := llgobuild.ContextFromTriple(compiler.TargetTriple)
	if err != nil {
		return nil, err
	}
	impcfg := &loader.Config{
		Fset: token.NewFileSet(),
		TypeChecker: types.Config{
			Import: llgoimporter.NewImporter(buildctx).Import,
			Sizes:  compiler.llvmtypes,
		},
		Build: &buildctx.Context,
	}
	// Must use parseFiles, so we retain comments;
	// this is important for annotation processing.
	astFiles, err := parseFiles(impcfg.Fset, filenames)
	if err != nil {
		return nil, err
	}
	// If no import path is specified, or the package's
	// name (not path) is "main", then set the import
	// path to be the same as the package's name.
	if pkgname := astFiles[0].Name.String(); importpath == "" || pkgname == "main" {
		importpath = pkgname
	}
	impcfg.CreateFromFiles(importpath, astFiles...)
	// Create a "runtime" package too, so we can reference
	// its types and functions in the compiler and generated
	// code.
	if importpath != "runtime" {
		astFiles, err := parseRuntime(&buildctx.Context, impcfg.Fset)
		if err != nil {
			return nil, err
		}
		impcfg.CreateFromFiles("runtime", astFiles...)
	}
	iprog, err := impcfg.Load()
	if err != nil {
		return nil, err
	}
	program := ssa.Create(iprog, 0)
	var mainPkginfo, runtimePkginfo *loader.PackageInfo
	if pkgs := iprog.InitialPackages(); len(pkgs) == 1 {
		mainPkginfo, runtimePkginfo = pkgs[0], pkgs[0]
	} else {
		mainPkginfo, runtimePkginfo = pkgs[0], pkgs[1]
	}
	mainPkg := program.CreatePackage(mainPkginfo)

	// Create a Module, which contains the LLVM bitcode.
	modulename := importpath
	compiler.module = &Module{Module: llvm.NewModule(modulename), Name: modulename}
	compiler.module.SetTarget(compiler.TargetTriple)
	compiler.module.SetDataLayout(compiler.dataLayout)

	// Create a new translation unit.
	unit := newUnit(compiler, mainPkg)

	// Create the runtime interface.
	compiler.runtime, err = newRuntimeInterface(
		runtimePkginfo.Pkg,
		compiler.module.Module,
		compiler.llvmtypes,
		FuncResolver(unit),
	)
	if err != nil {
		return nil, err
	}

	// Create a struct responsible for mapping static types to LLVM types,
	// and to runtime/dynamic type values.
	compiler.types = NewTypeMap(
		importpath,
		compiler.llvmtypes,
		compiler.module.Module,
		compiler.runtime,
		MethodResolver(unit),
	)

	// Create a Builder, for building LLVM instructions.
	compiler.builder = llvm.GlobalContext().NewBuilder()
	defer compiler.builder.Dispose()

	// Initialise debugging.
	compiler.debug.module = compiler.module.Module
	compiler.debug.Fset = impcfg.Fset
	compiler.debug.Sizes = compiler.llvmtypes

	mainPkg.Build()
	unit.translatePackage(mainPkg)
	compiler.processAnnotations(unit, mainPkginfo)
	if runtimePkginfo != mainPkginfo {
		compiler.processAnnotations(unit, runtimePkginfo)
	}

	// Finalise debugging.
	for _, cu := range compiler.debug.cu {
		compiler.module.AddNamedMetadataOperand(
			"llvm.dbg.cu",
			compiler.debug.MDNode(cu),
		)
	}

	// Export runtime type information.
	var exportedTypes []types.Type
	for _, m := range mainPkg.Members {
		if t, ok := m.(*ssa.Type); ok && ast.IsExported(t.Name()) {
			exportedTypes = append(exportedTypes, t.Type())
		}
	}
	compiler.exportRuntimeTypes(exportedTypes, importpath == "runtime")

	if importpath == "main" {
		// Wrap "main.main" in a call to runtime.main.
		if err = compiler.createMainFunction(); err != nil {
			return nil, fmt.Errorf("failed to create main.main: %v", err)
		}
	} else {
		if err := llgoimporter.Export(buildctx, mainPkg.Object); err != nil {
			return nil, fmt.Errorf("failed to export package data: %v", err)
		}
	}

	return compiler.module, nil
}
Exemplo n.º 2
0
func (compiler *compiler) Compile(fset *token.FileSet, files []*ast.File, importpath string) (m *Module, err error) {
	// FIXME create a compilation state, rather than storing in 'compiler'.
	compiler.fileset = fset
	compiler.initfuncs = nil
	compiler.varinitfuncs = nil

	// If no import path is specified, or the package's
	// name (not path) is "main", then set the import
	// path to be the same as the package's name.
	if importpath == "" || files[0].Name.String() == "main" {
		importpath = files[0].Name.String()
	}

	// Type-check, and store object data.
	compiler.typeinfo.Types = make(map[ast.Expr]types.Type)
	compiler.typeinfo.Values = make(map[ast.Expr]exact.Value)
	compiler.typeinfo.Objects = make(map[*ast.Ident]types.Object)
	compiler.typeinfo.Implicits = make(map[ast.Node]types.Object)
	compiler.typeinfo.Selections = make(map[*ast.SelectorExpr]*types.Selection)
	compiler.objectdata = make(map[types.Object]*ObjectData)
	compiler.methodsets = make(map[types.Type]*methodset)
	compiler.exportedtypes = nil
	compiler.llvmtypes = NewLLVMTypeMap(compiler.target)
	pkg, err := compiler.typecheck(importpath, fset, files)
	if err != nil {
		return nil, err
	}
	compiler.pkg = pkg

	// Create a Module, which contains the LLVM bitcode. Dispose it on panic,
	// otherwise we'll set a finalizer at the end. The caller may invoke
	// Dispose manually, which will render the finalizer a no-op.
	modulename := importpath
	compiler.module = &Module{llvm.NewModule(modulename), modulename, false}
	compiler.module.SetTarget(compiler.TargetTriple)
	compiler.module.SetDataLayout(compiler.target.String())
	defer func() {
		if e := recover(); e != nil {
			compiler.module.Dispose()
			panic(e)
		}
	}()

	// Create a struct responsible for mapping static types to LLVM types,
	// and to runtime/dynamic type values.
	var resolver Resolver = compiler
	compiler.FunctionCache = NewFunctionCache(compiler)
	compiler.types = NewTypeMap(compiler.llvmtypes, compiler.module.Module, importpath, compiler.FunctionCache, resolver)

	// Create a Builder, for building LLVM instructions.
	compiler.builder = newBuilder(compiler.types)
	defer compiler.builder.Dispose()

	compiler.debug_info = &llvm.DebugInfo{}
	// Compile each file in the package.
	for _, file := range files {
		compiler.compile_unit = &llvm.CompileUnitDescriptor{
			Language: llvm.DW_LANG_Go,
			Path:     llvm.FileDescriptor(fset.File(file.Pos()).Name()),
			Producer: LLGOProducer,
			Runtime:  LLGORuntimeVersion,
		}
		compiler.pushDebugContext(&compiler.compile_unit.Path)

		for _, decl := range file.Decls {
			compiler.VisitDecl(decl)
		}
		compiler.popDebugContext()
		if len(compiler.debug_context) > 0 {
			log.Panicln(compiler.debug_context)
		}
		compiler.module.AddNamedMetadataOperand("llvm.dbg.cu", compiler.debug_info.MDNode(compiler.compile_unit))
	}

	// Export runtime type information.
	compiler.exportRuntimeTypes()

	// Wrap "main.main" in a call to runtime.main.
	if importpath == "main" {
		err = compiler.createMainFunction()
		if err != nil {
			return nil, err
		}
	} else {
		var e = exporter{compiler: compiler}
		if err := e.Export(pkg); err != nil {
			return nil, err
		}
	}

	// Create global constructors. The initfuncs/varinitfuncs
	// slices are in the order of visitation; we generate the
	// list of constructors in the reverse order.
	//
	// The llgo linker will link modules in the order of
	// package dependency, i.e. if A requires B, then llgo-link
	// will link the modules in the order A, B. The "runtime"
	// package is always last.
	//
	// At program initialisation, the runtime initialisation
	// function (runtime.main) will invoke the constructors
	// in reverse order.
	var initfuncs [][]llvm.Value
	if compiler.varinitfuncs != nil {
		initfuncs = append(initfuncs, compiler.varinitfuncs)
	}
	if compiler.initfuncs != nil {
		initfuncs = append(initfuncs, compiler.initfuncs)
	}
	if initfuncs != nil {
		ctortype := llvm.PointerType(llvm.Int8Type(), 0)
		var ctors []llvm.Value
		var index int = 0
		for _, initfuncs := range initfuncs {
			for _, fnptr := range initfuncs {
				name := fmt.Sprintf("__llgo.ctor.%s.%d", importpath, index)
				fnptr.SetName(name)
				fnptr = llvm.ConstBitCast(fnptr, ctortype)
				ctors = append(ctors, fnptr)
				index++
			}
		}
		for i, n := 0, len(ctors); i < n/2; i++ {
			ctors[i], ctors[n-i-1] = ctors[n-i-1], ctors[i]
		}
		ctorsInit := llvm.ConstArray(ctortype, ctors)
		ctorsVar := llvm.AddGlobal(compiler.module.Module, ctorsInit.Type(), "runtime.ctors")
		ctorsVar.SetInitializer(ctorsInit)
		ctorsVar.SetLinkage(llvm.AppendingLinkage)
	}

	// Create debug metadata.
	//compiler.createMetadata()

	return compiler.module, nil
}
Exemplo n.º 3
0
Arquivo: compiler.go Projeto: pcc/llgo
func (compiler *compiler) Compile(filenames []string, importpath string) (m *Module, err error) {
	// FIXME create a compilation state, rather than storing in 'compiler'.
	compiler.llvmtypes = NewLLVMTypeMap(compiler.target)

	buildctx, err := llgobuild.ContextFromTriple(compiler.TargetTriple)
	if err != nil {
		return nil, err
	}
	impcfg := &goimporter.Config{
		TypeChecker: types.Config{
			Import: llgoimporter.NewImporter(buildctx).Import,
			Sizes:  compiler.llvmtypes,
		},
		Build: &buildctx.Context,
	}
	compiler.typechecker = &impcfg.TypeChecker
	compiler.importer = goimporter.New(impcfg)
	program := ssa.NewProgram(compiler.importer.Fset, 0)
	astFiles, err := parseFiles(compiler.importer.Fset, filenames)
	if err != nil {
		return nil, err
	}
	// If no import path is specified, or the package's
	// name (not path) is "main", then set the import
	// path to be the same as the package's name.
	if pkgname := astFiles[0].Name.String(); importpath == "" || pkgname == "main" {
		importpath = pkgname
	}
	mainPkginfo := compiler.importer.CreatePackage(importpath, astFiles...)
	if mainPkginfo.Err != nil {
		return nil, mainPkginfo.Err
	}
	// First call CreatePackages to resolve imports, and then CreatePackage
	// to obtain the main package. The latter simply returns the package
	// created by the former.
	if err := program.CreatePackages(compiler.importer); err != nil {
		return nil, err
	}
	mainpkg := program.CreatePackage(mainPkginfo)

	// Create a Module, which contains the LLVM bitcode. Dispose it on panic,
	// otherwise we'll set a finalizer at the end. The caller may invoke
	// Dispose manually, which will render the finalizer a no-op.
	modulename := importpath
	compiler.module = &Module{llvm.NewModule(modulename), modulename, false}
	compiler.module.SetTarget(compiler.TargetTriple)
	compiler.module.SetDataLayout(compiler.target.String())

	// Map runtime types and functions.
	runtimePkginfo := mainPkginfo
	runtimePkg := mainpkg
	if importpath != "runtime" {
		astFiles, err := parseRuntime(&buildctx.Context, compiler.importer.Fset)
		if err != nil {
			return nil, err
		}
		runtimePkginfo = compiler.importer.CreatePackage("runtime", astFiles...)
		if runtimePkginfo.Err != nil {
			return nil, err
		}
		runtimePkg = program.CreatePackage(runtimePkginfo)
	}

	// Create a new translation unit.
	unit := newUnit(compiler, mainpkg)

	// Create the runtime interface.
	compiler.runtime, err = newRuntimeInterface(
		runtimePkg.Object,
		compiler.module.Module,
		compiler.llvmtypes,
		FuncResolver(unit),
	)
	if err != nil {
		return nil, err
	}

	// Create a struct responsible for mapping static types to LLVM types,
	// and to runtime/dynamic type values.
	compiler.types = NewTypeMap(
		importpath,
		compiler.llvmtypes,
		compiler.module.Module,
		compiler.runtime,
		MethodResolver(unit),
	)

	// Create a Builder, for building LLVM instructions.
	compiler.builder = llvm.GlobalContext().NewBuilder()
	defer compiler.builder.Dispose()

	mainpkg.Build()
	unit.translatePackage(mainpkg)
	compiler.processAnnotations(unit, mainPkginfo)
	if runtimePkginfo != mainPkginfo {
		compiler.processAnnotations(unit, runtimePkginfo)
	}

	/*
		compiler.debug_info = &llvm.DebugInfo{}
		// Compile each file in the package.
		for _, file := range files {
			if compiler.GenerateDebug {
				cu := &llvm.CompileUnitDescriptor{
					Language: llvm.DW_LANG_Go,
					Path:     llvm.FileDescriptor(fset.File(file.Pos()).Name()),
					Producer: LLGOProducer,
					Runtime:  LLGORuntimeVersion,
				}
				compiler.pushDebugContext(cu)
				compiler.pushDebugContext(&cu.Path)
			}
			for _, decl := range file.Decls {
				compiler.VisitDecl(decl)
			}
			if compiler.GenerateDebug {
				compiler.popDebugContext()
				cu := compiler.popDebugContext()
				if len(compiler.debug_context) > 0 {
					log.Panicln(compiler.debug_context)
				}
				compiler.module.AddNamedMetadataOperand(
					"llvm.dbg.cu",
					compiler.debug_info.MDNode(cu),
				)
			}
		}
	*/

	// Export runtime type information.
	var exportedTypes []types.Type
	for _, m := range mainpkg.Members {
		if t, ok := m.(*ssa.Type); ok && ast.IsExported(t.Name()) {
			exportedTypes = append(exportedTypes, t.Type())
		}
	}
	compiler.exportRuntimeTypes(exportedTypes, importpath == "runtime")

	if importpath == "main" {
		// Wrap "main.main" in a call to runtime.main.
		if err = compiler.createMainFunction(); err != nil {
			return nil, fmt.Errorf("failed to create main.main: %v", err)
		}
	} else {
		if err := llgoimporter.Export(buildctx, mainpkg.Object); err != nil {
			return nil, fmt.Errorf("failed to export package data: %v", err)
		}
	}

	return compiler.module, nil
}
Exemplo n.º 4
0
func (compiler *compiler) Compile(fset *token.FileSet,
	pkg *ast.Package,
	exprTypes map[ast.Expr]types.Type) (m *Module, err error) {
	// FIXME create a compilation state, rather than storing in 'compiler'.
	compiler.fileset = fset
	compiler.pkg = pkg
	compiler.initfuncs = make([]Value, 0)

	// Create a Builder, for building LLVM instructions.
	compiler.builder = llvm.GlobalContext().NewBuilder()
	defer compiler.builder.Dispose()

	// Create a TargetMachine from the OS & Arch.
	triple := fmt.Sprintf("%s-unknown-%s",
		getTripleArchName(compiler.targetArch),
		compiler.targetOs)
	var machine llvm.TargetMachine
	for target := llvm.FirstTarget(); target.C != nil && machine.C == nil; target = target.NextTarget() {
		if target.Name() == compiler.targetArch {
			machine = target.CreateTargetMachine(triple, "", "",
				llvm.CodeGenLevelDefault,
				llvm.RelocDefault,
				llvm.CodeModelDefault)
			defer machine.Dispose()
		}
	}

	if machine.C == nil {
		err = fmt.Errorf("Invalid target triple: %s", triple)
		return
	}

	// Create a Module, which contains the LLVM bitcode. Dispose it on panic,
	// otherwise we'll set a finalizer at the end. The caller may invoke
	// Dispose manually, which will render the finalizer a no-op.
	modulename := pkg.Name
	compiler.target = machine.TargetData()
	compiler.module = &Module{llvm.NewModule(modulename), modulename, false}
	compiler.module.SetTarget(triple)
	compiler.module.SetDataLayout(compiler.target.String())
	defer func() {
		if e := recover(); e != nil {
			compiler.module.Dispose()
			panic(e)
			//err = e.(error)
		}
	}()
	compiler.types = NewTypeMap(compiler.module.Module, compiler.target, exprTypes)

	// Create a mapping from objects back to packages, so we can create the
	// appropriate symbol names.
	compiler.pkgmap = createPackageMap(pkg)

	// Compile each file in the package.
	for _, file := range pkg.Files {
		file.Scope.Outer = pkg.Scope
		compiler.filescope = file.Scope
		compiler.scope = file.Scope
		compiler.fixConstDecls(file)
		for _, decl := range file.Decls {
			compiler.VisitDecl(decl)
		}
	}

	// Define intrinsics for use by the runtime: malloc, free, memcpy, etc.
	compiler.defineRuntimeIntrinsics()

	// Create global constructors.
	//
	// XXX When imports are handled, we'll need to defer creating
	//     llvm.global_ctors until we create an executable. This is
	//     due to (a) imports having to be initialised before the
	//     importer, and (b) LLVM having no specified order of
	//     initialisation for ctors with the same priority.
	if len(compiler.initfuncs) > 0 {
		elttypes := []llvm.Type{
			llvm.Int32Type(),
			llvm.PointerType(
				llvm.FunctionType(llvm.VoidType(), nil, false), 0)}
		ctortype := llvm.StructType(elttypes, false)
		ctors := make([]llvm.Value, len(compiler.initfuncs))
		for i, fn := range compiler.initfuncs {
			struct_values := []llvm.Value{
				llvm.ConstInt(llvm.Int32Type(), 1, false),
				fn.LLVMValue()}
			ctors[i] = llvm.ConstStruct(struct_values, false)
		}

		global_ctors_init := llvm.ConstArray(ctortype, ctors)
		global_ctors_var := llvm.AddGlobal(
			compiler.module.Module, global_ctors_init.Type(),
			"llvm.global_ctors")
		global_ctors_var.SetInitializer(global_ctors_init)
		global_ctors_var.SetLinkage(llvm.AppendingLinkage)
	}

	// Create debug metadata.
	compiler.createMetadata()

	return compiler.module, nil
}
Exemplo n.º 5
0
func (compiler *compiler) Compile(fset *token.FileSet,
	pkg *ast.Package, importpath string,
	exprTypes map[ast.Expr]types.Type) (m *Module, err error) {

	// FIXME I'd prefer if we didn't modify global state. Perhaps
	// we should always take a copy of types.Universe?
	defer func() {
		types.Universe.Lookup("true").Data = types.Const{true}
		types.Universe.Lookup("false").Data = types.Const{false}
	}()

	// FIXME create a compilation state, rather than storing in 'compiler'.
	compiler.fileset = fset
	compiler.pkg = pkg
	compiler.importpath = importpath
	compiler.initfuncs = nil
	compiler.varinitfuncs = nil

	// Create a Builder, for building LLVM instructions.
	compiler.builder = llvm.GlobalContext().NewBuilder()
	defer compiler.builder.Dispose()

	// Create a Module, which contains the LLVM bitcode. Dispose it on panic,
	// otherwise we'll set a finalizer at the end. The caller may invoke
	// Dispose manually, which will render the finalizer a no-op.
	modulename := pkg.Name
	compiler.module = &Module{llvm.NewModule(modulename), modulename, false}
	compiler.module.SetTarget(compiler.TargetTriple)
	compiler.module.SetDataLayout(compiler.target.String())
	defer func() {
		if e := recover(); e != nil {
			compiler.module.Dispose()
			panic(e)
			//err = e.(error)
		}
	}()

	// Create a mapping from objects back to packages, so we can create the
	// appropriate symbol names.
	compiler.pkgmap = createPackageMap(pkg, importpath)

	// Create a struct responsible for mapping static types to LLVM types,
	// and to runtime/dynamic type values.
	var resolver Resolver = compiler
	compiler.FunctionCache = NewFunctionCache(compiler)
	compiler.types = NewTypeMap(compiler.llvmtypes, compiler.module.Module, importpath, exprTypes, compiler.FunctionCache, resolver)

	// Compile each file in the package.
	for _, file := range pkg.Files {
		file.Scope.Outer = pkg.Scope
		compiler.filescope = file.Scope
		compiler.scope = file.Scope
		compiler.fixConstDecls(file)
		for _, decl := range file.Decls {
			compiler.VisitDecl(decl)
		}
	}

	// Define intrinsics for use by the runtime: malloc, free, memcpy, etc.
	// These could be defined in LLVM IR, and may be moved there later.
	if pkg.Name == "runtime" {
		compiler.defineRuntimeIntrinsics()
	}

	// Export runtime type information.
	if pkg.Name == "runtime" {
		compiler.exportBuiltinRuntimeTypes()
	}

	// Wrap "main.main" in a call to runtime.main.
	if pkg.Name == "main" {
		err = compiler.createMainFunction()
		if err != nil {
			return nil, err
		}
	}

	// Create global constructors. The initfuncs/varinitfuncs
	// slices are in the order of visitation; we generate the
	// list of constructors in the reverse order.
	//
	// The llgo linker will link modules in the order of
	// package dependency, i.e. if A requires B, then llgo-link
	// will link the modules in the order A, B. The "runtime"
	// package is always last.
	//
	// At program initialisation, the runtime initialisation
	// function (runtime.main) will invoke the constructors
	// in reverse order.
	var initfuncs [][]Value
	if compiler.varinitfuncs != nil {
		initfuncs = append(initfuncs, compiler.varinitfuncs)
	}
	if compiler.initfuncs != nil {
		initfuncs = append(initfuncs, compiler.initfuncs)
	}
	if initfuncs != nil {
		ctortype := llvm.PointerType(llvm.FunctionType(llvm.VoidType(), nil, false), 0)
		var ctors []llvm.Value
		var index int = 0
		for _, initfuncs := range initfuncs {
			for _, fn := range initfuncs {
				fnval := fn.LLVMValue()
				fnval.SetName("__llgo.ctor." + compiler.importpath + strconv.Itoa(index))
				ctors = append(ctors, fnval)
				index++
			}
		}
		for i, n := 0, len(ctors); i < n/2; i++ {
			ctors[i], ctors[n-i-1] = ctors[n-i-1], ctors[i]
		}
		ctorsInit := llvm.ConstArray(ctortype, ctors)
		ctorsVar := llvm.AddGlobal(compiler.module.Module, ctorsInit.Type(), "runtime.ctors")
		ctorsVar.SetInitializer(ctorsInit)
		ctorsVar.SetLinkage(llvm.AppendingLinkage)
	}

	// Create debug metadata.
	//compiler.createMetadata()

	return compiler.module, nil
}
Exemplo n.º 6
0
func test() {
	llvm.LinkInJIT()
	llvm.InitializeNativeTarget()

	mod := llvm.NewModule("fac_module")

	// don't do that, because ExecutionEngine takes ownership over module
	//defer mod.Dispose()

	fac_args := []llvm.Type{llvm.Int32Type()}
	fac_type := llvm.FunctionType(llvm.Int32Type(), fac_args, false)
	fac := llvm.AddFunction(mod, "fac", fac_type)
	fac.SetFunctionCallConv(llvm.CCallConv)
	n := fac.Param(0)

	entry := llvm.AddBasicBlock(fac, "entry")
	iftrue := llvm.AddBasicBlock(fac, "iftrue")
	iffalse := llvm.AddBasicBlock(fac, "iffalse")
	end := llvm.AddBasicBlock(fac, "end")

	builder := llvm.NewBuilder()
	defer builder.Dispose()

	builder.SetInsertPointAtEnd(entry)
	If := builder.CreateICmp(llvm.IntEQ, n, llvm.ConstInt(llvm.Int32Type(), 0, false), "cmptmp")
	builder.CreateCondBr(If, iftrue, iffalse)

	builder.SetInsertPointAtEnd(iftrue)
	res_iftrue := llvm.ConstInt(llvm.Int32Type(), 1, false)
	builder.CreateBr(end)

	builder.SetInsertPointAtEnd(iffalse)
	n_minus := builder.CreateSub(n, llvm.ConstInt(llvm.Int32Type(), 1, false), "subtmp")
	call_fac_args := []llvm.Value{n_minus}
	call_fac := builder.CreateCall(fac, call_fac_args, "calltmp")
	res_iffalse := builder.CreateMul(n, call_fac, "multmp")
	builder.CreateBr(end)

	builder.SetInsertPointAtEnd(end)
	res := builder.CreatePHI(llvm.Int32Type(), "result")
	phi_vals := []llvm.Value{res_iftrue, res_iffalse}
	phi_blocks := []llvm.BasicBlock{iftrue, iffalse}
	res.AddIncoming(phi_vals, phi_blocks)
	builder.CreateRet(res)

	err := llvm.VerifyModule(mod, llvm.ReturnStatusAction)
	if err != nil {
		fmt.Println(err)
		return
	}

	engine, err := llvm.NewJITCompiler(mod, 2)
	if err != nil {
		fmt.Println(err)
		return
	}
	defer engine.Dispose()

	pass := llvm.NewPassManager()
	defer pass.Dispose()

	pass.Add(engine.TargetData())
	pass.AddConstantPropagationPass()
	pass.AddInstructionCombiningPass()
	pass.AddPromoteMemoryToRegisterPass()
	pass.AddGVNPass()
	pass.AddCFGSimplificationPass()
	pass.Run(mod)

	mod.Dump()

	exec_args := []llvm.GenericValue{llvm.NewGenericValueFromInt(llvm.Int32Type(), 10, false)}
	exec_res := engine.RunFunction(fac, exec_args)
	fmt.Println("-----------------------------------------")
	fmt.Println("Running fac(10) with JIT...")
	fmt.Printf("Result: %d\n", exec_res.Int(false))
}
Exemplo n.º 7
0
func (compiler *compiler) Compile(fset *token.FileSet, files []*ast.File, importpath string) (m *Module, err error) {
	// FIXME create a compilation state, rather than storing in 'compiler'.
	compiler.fileset = fset
	compiler.initfuncs = nil
	compiler.varinitfuncs = nil

	// Type-check, and store object data.
	compiler.objects = make(map[*ast.Ident]types.Object)
	compiler.objectdata = make(map[types.Object]*ObjectData)
	compiler.methodsets = make(map[types.Type]*methodset)
	compiler.llvmtypes = NewLLVMTypeMap(compiler.target)
	pkg, exprtypes, err := compiler.typecheck(importpath, fset, files)
	if err != nil {
		return nil, err
	}
	compiler.pkg = pkg
	importpath = pkgpath(pkg)

	// Create a Module, which contains the LLVM bitcode. Dispose it on panic,
	// otherwise we'll set a finalizer at the end. The caller may invoke
	// Dispose manually, which will render the finalizer a no-op.
	modulename := importpath
	compiler.module = &Module{llvm.NewModule(modulename), modulename, false}
	compiler.module.SetTarget(compiler.TargetTriple)
	compiler.module.SetDataLayout(compiler.target.String())
	defer func() {
		if e := recover(); e != nil {
			compiler.module.Dispose()
			panic(e)
		}
	}()

	// Create a struct responsible for mapping static types to LLVM types,
	// and to runtime/dynamic type values.
	var resolver Resolver = compiler
	compiler.FunctionCache = NewFunctionCache(compiler)
	compiler.types = NewTypeMap(compiler.llvmtypes, compiler.module.Module, importpath, exprtypes, compiler.FunctionCache, resolver)

	// Create a Builder, for building LLVM instructions.
	compiler.builder = newBuilder(compiler.types)
	defer compiler.builder.Dispose()

	// Compile each file in the package.
	for _, file := range files {
		for _, decl := range file.Decls {
			compiler.VisitDecl(decl)
		}
	}

	// Define intrinsics for use by the runtime: malloc, free, memcpy, etc.
	// These could be defined in LLVM IR, and may be moved there later.
	if importpath == "runtime" {
		compiler.defineRuntimeIntrinsics()
	}

	// Export runtime type information.
	if importpath == "runtime" {
		compiler.exportBuiltinRuntimeTypes()
	}

	// Wrap "main.main" in a call to runtime.main.
	if importpath == "main" {
		err = compiler.createMainFunction()
		if err != nil {
			return nil, err
		}
	}

	// Create global constructors. The initfuncs/varinitfuncs
	// slices are in the order of visitation; we generate the
	// list of constructors in the reverse order.
	//
	// The llgo linker will link modules in the order of
	// package dependency, i.e. if A requires B, then llgo-link
	// will link the modules in the order A, B. The "runtime"
	// package is always last.
	//
	// At program initialisation, the runtime initialisation
	// function (runtime.main) will invoke the constructors
	// in reverse order.
	var initfuncs [][]llvm.Value
	if compiler.varinitfuncs != nil {
		initfuncs = append(initfuncs, compiler.varinitfuncs)
	}
	if compiler.initfuncs != nil {
		initfuncs = append(initfuncs, compiler.initfuncs)
	}
	if initfuncs != nil {
		ctortype := llvm.PointerType(llvm.Int8Type(), 0)
		var ctors []llvm.Value
		var index int = 0
		for _, initfuncs := range initfuncs {
			for _, fnptr := range initfuncs {
				name := fmt.Sprintf("__llgo.ctor.%s.%d", importpath, index)
				fnptr.SetName(name)
				fnptr = llvm.ConstBitCast(fnptr, ctortype)
				ctors = append(ctors, fnptr)
				index++
			}
		}
		for i, n := 0, len(ctors); i < n/2; i++ {
			ctors[i], ctors[n-i-1] = ctors[n-i-1], ctors[i]
		}
		ctorsInit := llvm.ConstArray(ctortype, ctors)
		ctorsVar := llvm.AddGlobal(compiler.module.Module, ctorsInit.Type(), "runtime.ctors")
		ctorsVar.SetInitializer(ctorsInit)
		ctorsVar.SetLinkage(llvm.AppendingLinkage)
	}

	// Create debug metadata.
	//compiler.createMetadata()

	return compiler.module, nil
}
Exemplo n.º 8
0
func (compiler *compiler) Compile(fset *token.FileSet,
	pkg *ast.Package, importpath string,
	exprTypes map[ast.Expr]types.Type) (m *Module, err error) {

	// FIXME I'd prefer if we didn't modify global state. Perhaps
	// we should always take a copy of types.Universe?
	defer func() {
		types.Universe.Lookup("true").Data = types.Const{true}
		types.Universe.Lookup("false").Data = types.Const{false}
	}()

	// FIXME create a compilation state, rather than storing in 'compiler'.
	compiler.fileset = fset
	compiler.pkg = pkg
	compiler.importpath = importpath
	compiler.initfuncs = nil
	compiler.varinitfuncs = nil

	// Create a Builder, for building LLVM instructions.
	compiler.builder = llvm.GlobalContext().NewBuilder()
	defer compiler.builder.Dispose()

	// Create a Module, which contains the LLVM bitcode. Dispose it on panic,
	// otherwise we'll set a finalizer at the end. The caller may invoke
	// Dispose manually, which will render the finalizer a no-op.
	modulename := pkg.Name
	compiler.module = &Module{llvm.NewModule(modulename), modulename, false}
	compiler.module.SetTarget(compiler.TargetTriple)
	compiler.module.SetDataLayout(compiler.target.String())
	defer func() {
		if e := recover(); e != nil {
			compiler.module.Dispose()
			panic(e)
			//err = e.(error)
		}
	}()

	// Create a mapping from objects back to packages, so we can create the
	// appropriate symbol names.
	compiler.pkgmap = createPackageMap(pkg, importpath)

	// Create a struct responsible for mapping static types to LLVM types,
	// and to runtime/dynamic type values.
	var resolver Resolver = compiler
	compiler.FunctionCache = NewFunctionCache(compiler)
	compiler.types = NewTypeMap(compiler.llvmtypes, compiler.module.Module, importpath, exprTypes, compiler.FunctionCache, resolver)

	// Compile each file in the package.
	for _, file := range pkg.Files {
		file.Scope.Outer = pkg.Scope
		compiler.filescope = file.Scope
		compiler.scope = file.Scope
		compiler.fixConstDecls(file)
		for _, decl := range file.Decls {
			compiler.VisitDecl(decl)
		}
	}

	// Define intrinsics for use by the runtime: malloc, free, memcpy, etc.
	// These could be defined in LLVM IR, and may be moved there later.
	if pkg.Name == "runtime" {
		compiler.defineRuntimeIntrinsics()
	}

	// Export runtime type information.
	if pkg.Name == "runtime" {
		compiler.exportBuiltinRuntimeTypes()
	}

	// Create global constructors. The initfuncs/varinitfuncs
	// slices are in the order of visitation, and that is how
	// their priorities are assigned.
	//
	// The llgo linker (llgo-link) is responsible for reordering
	// global constructors according to package dependency order.
	var initfuncs [][]Value
	if compiler.varinitfuncs != nil {
		initfuncs = append(initfuncs, compiler.varinitfuncs)
	}
	if compiler.initfuncs != nil {
		initfuncs = append(initfuncs, compiler.initfuncs)
	}
	if initfuncs != nil {
		elttypes := []llvm.Type{llvm.Int32Type(), llvm.PointerType(llvm.FunctionType(llvm.VoidType(), nil, false), 0)}
		ctortype := llvm.StructType(elttypes, false)
		var ctors []llvm.Value
		var priority uint64 = 1
		for _, initfuncs := range initfuncs {
			for _, fn := range initfuncs {
				priorityval := llvm.ConstInt(llvm.Int32Type(), uint64(priority), false)
				struct_values := []llvm.Value{priorityval, fn.LLVMValue()}
				ctors = append(ctors, llvm.ConstStruct(struct_values, false))
				priority++
			}
		}
		global_ctors_init := llvm.ConstArray(ctortype, ctors)
		global_ctors_var := llvm.AddGlobal(compiler.module.Module, global_ctors_init.Type(), "llvm.global_ctors")
		global_ctors_var.SetInitializer(global_ctors_init)
		global_ctors_var.SetLinkage(llvm.AppendingLinkage)
	}

	// Create debug metadata.
	//compiler.createMetadata()

	return compiler.module, nil
}
Exemplo n.º 9
0
func (compiler *compiler) Compile(fset *token.FileSet,
	pkg *ast.Package, importpath string,
	exprTypes map[ast.Expr]types.Type) (m *Module, err error) {
	// FIXME create a compilation state, rather than storing in 'compiler'.
	compiler.fileset = fset
	compiler.pkg = pkg
	compiler.importpath = importpath
	compiler.initfuncs = nil
	compiler.varinitfuncs = nil

	// Create a Builder, for building LLVM instructions.
	compiler.builder = llvm.GlobalContext().NewBuilder()
	defer compiler.builder.Dispose()

	// Create a TargetMachine from the OS & Arch.
	triple := compiler.GetTargetTriple()
	var machine llvm.TargetMachine
	for target := llvm.FirstTarget(); target.C != nil && machine.C == nil; target = target.NextTarget() {
		if target.Name() == compiler.targetArch {
			machine = target.CreateTargetMachine(triple, "", "",
				llvm.CodeGenLevelDefault,
				llvm.RelocDefault,
				llvm.CodeModelDefault)
			defer machine.Dispose()
		}
	}

	if machine.C == nil {
		err = fmt.Errorf("Invalid target triple: %s", triple)
		return
	}

	// Create a Module, which contains the LLVM bitcode. Dispose it on panic,
	// otherwise we'll set a finalizer at the end. The caller may invoke
	// Dispose manually, which will render the finalizer a no-op.
	modulename := pkg.Name
	compiler.target = machine.TargetData()
	compiler.module = &Module{llvm.NewModule(modulename), modulename, false}
	compiler.module.SetTarget(triple)
	compiler.module.SetDataLayout(compiler.target.String())
	defer func() {
		if e := recover(); e != nil {
			compiler.module.Dispose()
			panic(e)
			//err = e.(error)
		}
	}()

	// Create a mapping from objects back to packages, so we can create the
	// appropriate symbol names.
	compiler.pkgmap = createPackageMap(pkg, importpath)

	// Create a struct responsible for mapping static types to LLVM types,
	// and to runtime/dynamic type values.
	var resolver Resolver = compiler
	llvmtypemap := NewLLVMTypeMap(compiler.module.Module, compiler.target)
	compiler.FunctionCache = NewFunctionCache(compiler)
	compiler.types = NewTypeMap(llvmtypemap, importpath, exprTypes, compiler.FunctionCache, compiler.pkgmap, resolver)

	// Compile each file in the package.
	for _, file := range pkg.Files {
		file.Scope.Outer = pkg.Scope
		compiler.filescope = file.Scope
		compiler.scope = file.Scope
		compiler.fixConstDecls(file)
		for _, decl := range file.Decls {
			compiler.VisitDecl(decl)
		}
	}

	// Define intrinsics for use by the runtime: malloc, free, memcpy, etc.
	// These could be defined in LLVM IR, and may be moved there later.
	if pkg.Name == "runtime" {
		compiler.defineRuntimeIntrinsics()
	}

	// Export runtime type information.
	if pkg.Name == "runtime" {
		compiler.exportBuiltinRuntimeTypes()
	}

	// Create global constructors.
	//
	// XXX When imports are handled, we'll need to defer creating
	//     llvm.global_ctors until we create an executable. This is
	//     due to (a) imports having to be initialised before the
	//     importer, and (b) LLVM having no specified order of
	//     initialisation for ctors with the same priority.
	var initfuncs [][]Value
	if compiler.varinitfuncs != nil {
		initfuncs = append(initfuncs, compiler.varinitfuncs)
	}
	if compiler.initfuncs != nil {
		initfuncs = append(initfuncs, compiler.initfuncs)
	}
	if initfuncs != nil {
		elttypes := []llvm.Type{llvm.Int32Type(), llvm.PointerType(llvm.FunctionType(llvm.VoidType(), nil, false), 0)}
		ctortype := llvm.StructType(elttypes, false)
		var ctors []llvm.Value
		var priority uint64
		for _, initfuncs := range initfuncs {
			for _, fn := range initfuncs {
				priorityval := llvm.ConstInt(llvm.Int32Type(), uint64(priority), false)
				struct_values := []llvm.Value{priorityval, fn.LLVMValue()}
				ctors = append(ctors, llvm.ConstStruct(struct_values, false))
				priority++
			}
		}
		global_ctors_init := llvm.ConstArray(ctortype, ctors)
		global_ctors_var := llvm.AddGlobal(compiler.module.Module, global_ctors_init.Type(), "llvm.global_ctors")
		global_ctors_var.SetInitializer(global_ctors_init)
		global_ctors_var.SetLinkage(llvm.AppendingLinkage)
	}

	// Create debug metadata.
	//compiler.createMetadata()

	return compiler.module, nil
}