Exemplo n.º 1
0
// PlotTwoNurbs plots two NURBS for comparison
func PlotTwoNurbs(dirout, fn string, b, c *Nurbs, npts int, ids bool, extra func()) {
	plt.Reset()
	if io.FnExt(fn) == ".eps" {
		plt.SetForEps(1.5, 500)
	} else {
		plt.SetForPng(1.5, 500, 150)
	}

	plt.Subplot(3, 1, 1)
	b.DrawCtrl2d(ids, "", "")
	b.DrawElems2d(npts, ids, "", "")
	if extra != nil {
		extra()
	}
	plt.Equal()

	plt.Subplot(3, 1, 2)
	c.DrawCtrl2d(ids, "", "")
	c.DrawElems2d(npts, ids, "", "")
	plt.Equal()

	plt.Subplot(3, 1, 3)
	b.DrawElems2d(npts, ids, ", lw=3", "")
	c.DrawElems2d(npts, ids, ", color='red', marker='+', markevery=10", "color='green', size=7, va='bottom'")
	plt.Equal()

	plt.SaveD(dirout, fn)
}
Exemplo n.º 2
0
func main() {

	// finalise analysis process and catch errors
	defer out.End()

	// input data
	simfn := "onepulse-qua9co.sim"
	flag.Parse()
	if len(flag.Args()) > 0 {
		simfn = flag.Arg(0)
	}
	if io.FnExt(simfn) == "" {
		simfn += ".sim"
	}

	// start analysis process
	out.Start(simfn, 0, 0)

	// define entities
	out.Define("A B C D E", out.N{-5, -4, -3, -2, -1})
	out.Define("a b c d e", out.P{{15, 8}, {13, 8}, {8, 8}, {4, 8}, {0, 0}})

	// load results
	out.LoadResults(nil)

	// styles
	me := 10
	S := []plt.Fmt{
		plt.Fmt{C: "b", M: "*", Me: me},
		plt.Fmt{C: "g", M: "o", Me: me},
		plt.Fmt{C: "m", M: "x", Me: me},
		plt.Fmt{C: "orange", M: "+", Me: me},
		plt.Fmt{C: "r", M: "^", Me: me},
	}

	// pl
	out.Splot("liquid pressure")
	for i, l := range []string{"A", "B", "C", "D", "E"} {
		out.Plot("t", "pl", l, S[i], -1)
	}

	// uy
	out.Splot("displacements")
	for i, l := range []string{"A", "B", "C", "D", "E"} {
		out.Plot("t", "uy", l, S[i], -1)
	}

	out.Splot("liquid saturation")
	for i, l := range []string{"a", "b", "c", "d", "e"} {
		out.Plot("t", "sl", l, S[i], -1)
	}

	out.Splot("stresses")
	for i, l := range []string{"a", "b", "c", "d", "e"} {
		out.Plot("t", "sy", l, S[i], -1)
	}

	// show
	out.Draw("", "", true, nil)
}
Exemplo n.º 3
0
func main() {

	// input data
	simfn := "onepulse-qua9co.sim"
	flag.Parse()
	if len(flag.Args()) > 0 {
		simfn = flag.Arg(0)
	}
	if io.FnExt(simfn) == "" {
		simfn += ".sim"
	}

	// start analysis process
	out.Start(simfn, 0, 0)

	// define entities
	out.Define("A C E", out.N{-5, -3, -1})
	out.Define("a b", out.P{{1, 8}, {0, 8}})

	// load results
	out.LoadResults(nil)

	// styles
	me := 10
	Sn := []plt.Fmt{
		plt.Fmt{C: "b", M: "*", Me: me},
		plt.Fmt{C: "m", M: "x", Me: me},
		plt.Fmt{C: "r", M: "^", Me: me},
	}
	Se := []plt.Fmt{
		plt.Fmt{C: "b", M: "*", Me: me},
		plt.Fmt{C: "g", M: "o", Me: me},
	}

	// pl
	out.Splot("liquid pressure")
	for i, l := range []string{"A", "C", "E"} {
		out.Plot("t", "pl", l, Sn[i], -1)
	}

	// uy
	out.Splot("displacements")
	for i, l := range []string{"A", "C", "E"} {
		out.Plot("t", "uy", l, Sn[i], -1)
	}

	out.Splot("liquid saturation")
	for i, l := range []string{"a", "b"} {
		out.Plot("t", "sl", l, Se[i], -1)
	}

	out.Splot("stresses")
	for i, l := range []string{"a", "b"} {
		out.Plot("t", "sy", l, Se[i], -1)
	}

	// show
	out.Draw("", "", true, nil)
}
Exemplo n.º 4
0
func read_summary(simfn string) (*utl.DblSlist, string) {
	if simfn == "" {
		return nil, ""
	}
	if io.FnExt(simfn) == "" {
		simfn += ".sim"
	}
	out.Start(simfn, 0, 0)
	return &out.Sum.Resids, io.FnKey(simfn)
}
Exemplo n.º 5
0
// Draw draws or save figure with plot
//  dirout -- directory to save figure
//  fname  -- file name; e.g. myplot.eps or myplot.png. Use "" to skip saving
//  show   -- shows figure
//  extra  -- is called just after Subplot command and before any plotting
//  Note: subplots will be split if using 'eps' files
func Draw(dirout, fname string, show bool, extra ExtraPlt) {
	var fnk string // filename key
	var ext string // extension
	var eps bool   // is eps figure
	if fname != "" {
		fnk = io.FnKey(fname)
		ext = io.FnExt(fname)
		eps = ext == ".eps"
	}
	nplots := len(Splots)
	nr, nc := utl.BestSquare(nplots)
	var k int
	for i := 0; i < nr; i++ {
		for j := 0; j < nc; j++ {
			if !eps {
				plt.Subplot(nr, nc, k+1)
			}
			if extra != nil {
				extra(i+1, j+1, nplots)
			}
			if Splots[k].Title != "" {
				plt.Title(Splots[k].Title, Splots[k].Topts)
			}
			data := Splots[k].Data
			for _, d := range data {
				if d.Style.L == "" {
					d.Style.L = d.Alias
				}
				x, y := d.X, d.Y
				if math.Abs(Splots[k].Xscale) > 0 {
					x = make([]float64, len(d.X))
					la.VecCopy(x, Splots[k].Xscale, d.X)
				}
				if math.Abs(Splots[k].Yscale) > 0 {
					y = make([]float64, len(d.Y))
					la.VecCopy(y, Splots[k].Yscale, d.Y)
				}
				plt.Plot(x, y, d.Style.GetArgs("clip_on=0"))
			}
			plt.Gll(Splots[k].Xlbl, Splots[k].Ylbl, Splots[k].GllArgs)
			if eps {
				savefig(dirout, fnk, ext, k)
				plt.Clf()
			}
			k += 1
		}
	}
	if !eps && fname != "" {
		savefig(dirout, fnk, ext, -1)
	}
	if show {
		plt.Show()
	}
}
Exemplo n.º 6
0
func main() {

	// finalise analysis process and catch errors
	defer out.End()

	// input data
	simfn := "d2-simple-flux"
	flag.Parse()
	if len(flag.Args()) > 0 {
		simfn = flag.Arg(0)
	}
	if io.FnExt(simfn) == "" {
		simfn += ".sim"
	}

	// start analysis process
	out.Extrap = []string{"nwlx", "nwly"}
	out.Start(simfn, 0, 0)

	// define entities
	out.Define("top-middle", out.At{5, 3})
	out.Define("section-A", out.N{-1})
	out.Define("section-B", out.Along{{0, 0}, {10, 0}})

	// load results
	out.LoadResults(nil)

	// compute water discharge along section-A
	nwlx_TM := out.GetRes("ex_nwlx", "top-middle", -1)
	Q := out.Integrate("ex_nwlx", "section-A", "y", -1)
	io.PfYel("Q = %g m³/s [answer: 0.0003]\n", Q)

	// plot
	kt := len(out.Times) - 1
	out.Splot("")
	out.Plot("pl", "y", "section-A", plt.Fmt{L: "t=0"}, 0)
	out.Plot("pl", "y", "section-A", plt.Fmt{L: io.Sf("t=%g", out.Times[kt])}, kt)
	out.Splot("")
	out.Plot("x", "pl", "section-B", plt.Fmt{L: "t=0"}, 0)
	out.Plot("x", "pl", "section-B", plt.Fmt{L: io.Sf("t=%g", out.Times[kt])}, kt)
	out.Splot("")
	out.Plot("t", nwlx_TM, "top-middle", plt.Fmt{}, -1)
	out.Csplot.Ylbl = "$n_{\\ell}\\cdot w_{\\ell x}$"

	// show
	if true {
		out.Draw("", "", true, func(i, j, nplots int) {
			if i == 2 && j == 1 {
				plt.Plot([]float64{0, 10}, []float64{10, 9}, "'k--'")
			}
		})
	}
}
Exemplo n.º 7
0
// PlotNurbsBasis plots basis functions la and lb
func PlotNurbsBasis(dirout, fn string, b *Nurbs, la, lb int) {
	npts := 41
	plt.Reset()
	if io.FnExt(fn) == ".eps" {
		plt.SetForEps(1.5, 500)
	} else {
		plt.SetForPng(1.5, 600, 150)
	}

	plt.Subplot(3, 2, 1)
	b.DrawCtrl2d(false, "", "")
	b.DrawElems2d(npts, false, "", "")
	t0 := time.Now()
	b.PlotBasis(la, "", 11, 0) // 0 => CalcBasis
	io.Pfcyan("time elapsed (calcbasis) = %v\n", time.Now().Sub(t0))
	plt.Equal()

	plt.Subplot(3, 2, 2)
	b.DrawCtrl2d(false, "", "")
	b.DrawElems2d(npts, false, "", "")
	b.PlotBasis(lb, "", 11, 0) // 0 => CalcBasis
	plt.Equal()

	plt.Subplot(3, 2, 3)
	b.DrawCtrl2d(false, "", "")
	b.DrawElems2d(npts, false, "", "")
	b.PlotBasis(la, "", 11, 1) // 1 => CalcBasisAndDerivs
	plt.Equal()

	plt.Subplot(3, 2, 4)
	b.DrawCtrl2d(false, "", "")
	b.DrawElems2d(npts, false, "", "")
	b.PlotBasis(lb, "", 11, 1) // 1 => CalcBasisAndDerivs
	plt.Equal()

	plt.Subplot(3, 2, 5)
	b.DrawCtrl2d(false, "", "")
	b.DrawElems2d(npts, false, "", "")
	t0 = time.Now()
	b.PlotBasis(la, "", 11, 2) // 2 => RecursiveBasis
	io.Pfcyan("time elapsed (recursive) = %v\n", time.Now().Sub(t0))
	plt.Equal()

	plt.Subplot(3, 2, 6)
	b.DrawCtrl2d(false, "", "")
	b.DrawElems2d(npts, false, "", "")
	b.PlotBasis(lb, "", 11, 2) // 2 => RecursiveBasis
	plt.Equal()

	plt.SaveD(dirout, fn)
}
Exemplo n.º 8
0
// PlotNurbs plots a NURBS
func PlotNurbs(dirout, fn string, b *Nurbs, npts int, ids bool, extra func()) {
	plt.Reset()
	if io.FnExt(fn) == ".eps" {
		plt.SetForEps(1.0, 500)
	} else {
		plt.SetForPng(1.0, 500, 150)
	}
	b.DrawCtrl2d(ids, "", "")
	b.DrawElems2d(npts, ids, "", "")
	if extra != nil {
		extra()
	}
	plt.Equal()
	plt.SaveD(dirout, fn)
}
Exemplo n.º 9
0
// PlotNurbsDerivs plots derivatives of basis functions la and lb
func PlotNurbsDerivs(dirout, fn string, b *Nurbs, la, lb int) {
	npts := 41
	plt.Reset()
	if io.FnExt(fn) == ".eps" {
		plt.SetForEps(1.5, 500)
	} else {
		plt.SetForPng(1.5, 600, 150)
	}

	plt.Subplot(4, 2, 1)
	t0 := time.Now()
	b.PlotDeriv(la, 0, "", npts, 0) // 0 => CalcBasisAndDerivs
	io.Pfcyan("time elapsed (calcbasis) = %v\n", time.Now().Sub(t0))
	plt.Equal()

	plt.Subplot(4, 2, 2)
	t0 = time.Now()
	b.PlotDeriv(la, 0, "", npts, 1) // 1 => NumericalDeriv
	io.Pfcyan("time elapsed (numerical) = %v\n", time.Now().Sub(t0))
	plt.Equal()

	plt.Subplot(4, 2, 3)
	b.PlotDeriv(la, 1, "", npts, 0) // 0 => CalcBasisAndDerivs
	plt.Equal()

	plt.Subplot(4, 2, 4)
	b.PlotDeriv(la, 1, "", npts, 1) // 0 => NumericalDeriv
	plt.Equal()

	plt.Subplot(4, 2, 5)
	b.PlotDeriv(lb, 0, "", npts, 0) // 0 => CalcBasisAndDerivs
	plt.Equal()

	plt.Subplot(4, 2, 6)
	b.PlotDeriv(lb, 0, "", npts, 1) // 0 => NumericalDeriv
	plt.Equal()

	plt.Subplot(4, 2, 7)
	b.PlotDeriv(lb, 1, "", npts, 0) // 0 => CalcBasisAndDerivs
	plt.Equal()

	plt.Subplot(4, 2, 8)
	b.PlotDeriv(lb, 1, "", npts, 1) // 0 => NumericalDeriv
	plt.Equal()

	plt.SaveD(dirout, fn)
}
Exemplo n.º 10
0
func main() {

	// finalise analysis process and catch errors
	defer out.End()

	// input data
	simfn := "a-coarse-elast-d2-q9"
	flag.Parse()
	if len(flag.Args()) > 0 {
		simfn = flag.Arg(0)
	}
	if io.FnExt(simfn) == "" {
		simfn += ".sim"
	}

	// start analysis process
	out.Start(simfn, 0, 0)

	// define entities
	out.Define("a", out.P{{18, 8}})

	// load results
	out.LoadResults(nil)

	nf_a := out.GetRes("nf", "a", -1)
	pl_a := out.GetRes("pl", "a", -1)
	pc_a := make([]float64, len(pl_a))
	for i, _ := range pl_a {
		pc_a[i] = -pl_a[i]
	}

	out.Splot("LRM")
	_, d, _ := io.ReadTable("lrm.dat")
	plt.Plot(d["pc"], d["sl"], "'c-',lw=2")

	out.Plot(pc_a, "sl", "a", plt.Fmt{M: "o"}, -1)
	out.Csplot.Xlbl = "$p_c$"

	out.Splot("porosity")
	out.Plot("t", nf_a, "a", plt.Fmt{M: "+"}, -1)
	out.Csplot.Ylbl = "$n_f$"

	// show
	out.Draw("", "", true, nil)
}
Exemplo n.º 11
0
func main() {

	// input data file
	inpfn := "data/loccmdrv1.inp"
	flag.Parse()
	if len(flag.Args()) > 0 {
		inpfn = flag.Arg(0)
	}
	if io.FnExt(inpfn) == "" {
		inpfn += ".inp"
	}

	// read and parse input data
	var in Input
	b, err := io.ReadFile(inpfn)
	if err != nil {
		io.PfRed("cannot read %s\n", inpfn)
		return
	}
	err = json.Unmarshal(b, &in)
	if err != nil {
		io.PfRed("cannot parse %s\n", inpfn)
		return
	}
	in.PostProcess()

	// print input data
	io.Pf("%v\n", in)

	// load simulation
	sim := inp.ReadSim(in.Dir, in.SimFn, "cmd_", false)
	if sim == nil {
		io.PfRed("cannot load simulation\n")
		return
	}

	// get material data
	mat := sim.Mdb.Get(in.MatName)
	if mat == nil {
		io.PfRed("cannot get material\n")
		return
	}
	//io.Pfcyan("mat = %v\n", mat)

	// get and initialise model
	mdl, _ := msolid.GetModel(in.SimFn, in.MatName, mat.Model, false)
	if mdl == nil {
		io.PfRed("cannot allocate model\n")
		return
	}
	ndim := 3
	pstress := false
	mdl.Init(ndim, pstress, mat.Prms)
	//io.Pforan("mdl = %v\n", mdl)

	// load path
	var pth msolid.Path
	err = pth.ReadJson(ndim, path.Join(in.Dir, in.PathFn))
	if err != nil {
		io.PfRed("cannot read path file %v\n", err)
		return
	}
	//io.PfYel("pth = %v\n", pth)

	// driver
	var drv msolid.Driver
	drv.InitWithModel(ndim, mdl)

	// run
	err = drv.Run(&pth)
	if err != nil {
		io.Pfred("driver: Run failed: %v\n", err)
	}

	// plot
	//if false {
	if true {
		var plr msolid.Plotter
		plr.SetFig(false, in.FigEps, in.FigProp, in.FigWid, "/tmp", "cmd_"+in.SimFn)
		var epm msolid.EPmodel
		if m, ok := mdl.(msolid.EPmodel); ok {
			plr.SetModel(m)
			epm = m
		}
		if epm != nil {
			//plr.Phi = epm.Get_phi()
			b := epm.Get_bsmp()
			epm.Set_bsmp(0)
			plr.YsClr0 = "magenta"
			plr.Plot(in.PlotSet, drv.Res, nil, true, false)
			epm.Set_bsmp(b)
		}
		plr.YsClr0 = "green"
		plr.Plot(in.PlotSet, drv.Res, drv.Eps, false, true)
	}

	// plot ys
	if false {
		//if true {
		plt.Reset()
		m := mdl.(*msolid.SmpInvs)
		φ := m.Get_phi()
		σcCte := 10.0
		M := tsr.Phi2M(φ, "oct")
		rmin, rmax := 0.0, 1.28*M*σcCte
		nr, nα := 31, 81
		//nr,   nα   := 31, 1001
		npolarc := true
		simplec := false
		only0 := false
		grads := false
		showpts := false
		ferr := 10.0
		tsr.PlotOct("fig_isofun02.png", σcCte, rmin, rmax, nr, nα, φ, m.Isof.Fa, m.Isof.Ga,
			npolarc, simplec, only0, grads, showpts, true, true, ferr)
	}
}
Exemplo n.º 12
0
func main() {

	// input data
	simfn := "elast.sim"
	matname := "lrm1"
	pcmax := 30.0
	npts := 101

	// parse flags
	flag.Parse()
	if len(flag.Args()) > 0 {
		simfn = flag.Arg(0)
	}
	if len(flag.Args()) > 1 {
		matname = flag.Arg(1)
	}
	if len(flag.Args()) > 2 {
		pcmax = io.Atof(flag.Arg(2))
	}
	if len(flag.Args()) > 3 {
		npts = io.Atoi(flag.Arg(3))
	}

	// check extension
	if io.FnExt(simfn) == "" {
		simfn += ".sim"
	}

	// print input data
	io.Pf("\nInput data\n")
	io.Pf("==========\n")
	io.Pf("  simfn   = %30s // simulation filename\n", simfn)
	io.Pf("  matname = %30s // material name\n", matname)
	io.Pf("  pcmax   = %30v // max pc\n", pcmax)
	io.Pf("  npts    = %30v // number of points\n", npts)
	io.Pf("\n")

	// load simulation
	sim := inp.ReadSim("", simfn, "lrm_", false)
	if sim == nil {
		io.PfRed("cannot load simulation\n")
		return
	}

	// get material data
	mat := sim.Mdb.Get(matname)
	if mat == nil {
		io.PfRed("cannot get material\n")
		return
	}
	io.Pforan("mat = %v\n", mat)

	// get and initialise model
	mdl := mreten.GetModel(simfn, matname, mat.Model, false)
	if mdl == nil {
		io.PfRed("cannot allocate model\n")
		return
	}
	mdl.Init(mat.Prms)

	// plot drying path
	d_Pc := utl.LinSpace(0, pcmax, npts)
	d_Sl := make([]float64, npts)
	d_Sl[0] = 1
	var err error
	for i := 1; i < npts; i++ {
		d_Sl[i], err = mreten.Update(mdl, d_Pc[i-1], d_Sl[i-1], d_Pc[i]-d_Pc[i-1])
		if err != nil {
			io.PfRed("drying: cannot updated model\n%v\n", err)
			return
		}
	}
	plt.Plot(d_Pc, d_Sl, io.Sf("'b-', label='%s (dry)', clip_on=0", matname))

	// plot wetting path
	w_Pc := utl.LinSpace(pcmax, 0, npts)
	w_Sl := make([]float64, npts)
	w_Sl[0] = d_Sl[npts-1]
	for i := 1; i < npts; i++ {
		w_Sl[i], err = mreten.Update(mdl, w_Pc[i-1], w_Sl[i-1], w_Pc[i]-w_Pc[i-1])
		if err != nil {
			io.PfRed("wetting: cannot updated model\n%v\n", err)
			return
		}
	}
	plt.Plot(w_Pc, w_Sl, io.Sf("'c-', label='%s (wet)', clip_on=0", matname))

	// save results
	type Results struct{ Pc, Sl []float64 }
	res := Results{append(d_Pc, w_Pc...), append(d_Sl, w_Sl...)}
	var buf bytes.Buffer
	enc := json.NewEncoder(&buf)
	err = enc.Encode(&res)
	if err != nil {
		io.PfRed("cannot encode results\n")
		return
	}
	fn := path.Join(sim.Data.DirOut, matname+".dat")
	io.WriteFile(fn, &buf)
	io.Pf("file <%s> written\n", fn)

	// show figure
	plt.AxisYrange(0, 1)
	plt.Cross()
	plt.Gll("$p_c$", "$s_{\\ell}$", "")
	plt.Show()
}
Exemplo n.º 13
0
func main() {

	// catch errors
	defer func() {
		if err := recover(); err != nil {
			if mpi.Rank() == 0 {
				chk.Verbose = true
				for i := 8; i > 3; i-- {
					chk.CallerInfo(i)
				}
				io.PfRed("ERROR: %v\n", err)
			}
		}
		mpi.Stop(false)
	}()
	mpi.Start(false)

	// message
	if mpi.Rank() == 0 {
		io.PfWhite("\nGofem v3 -- Go Finite Element Method\n\n")
		io.Pf("Copyright 2015 Dorival Pedroso and Raul Durand. All rights reserved.\n")
		io.Pf("Use of this source code is governed by a BSD-style\n")
		io.Pf("license that can be found in the LICENSE file.\n\n")
	}

	// simulation filenamepath
	flag.Parse()
	var fnamepath string
	if len(flag.Args()) > 0 {
		fnamepath = flag.Arg(0)
	} else {
		chk.Panic("Please, provide a filename. Ex.: cylinder.sim")
	}

	// check extension
	if io.FnExt(fnamepath) == "" {
		fnamepath += ".sim"
	}

	// other options
	erasefiles := true
	verbose := true
	if len(flag.Args()) > 1 {
		erasefiles = io.Atob(flag.Arg(1))
	}
	if len(flag.Args()) > 2 {
		verbose = io.Atob(flag.Arg(2))
	}

	// profiling?
	defer utl.DoProf(false)()

	// start global variables and log
	if !fem.Start(fnamepath, erasefiles, verbose) {
		chk.Panic("Start failed\n")
		return
	}

	// make sure to flush log
	defer fem.End()

	// run simulation
	if !fem.Run() {
		io.PfRed("ERROR: cannot run simulation\n")
	}
}
Exemplo n.º 14
0
func main() {

	// finalise analysis process and catch errors
	defer out.End()

	// input data
	simfn := "data/twoqua4.sim"
	exnwl := false
	stgidx := 0

	// parse flags
	flag.Parse()
	if len(flag.Args()) > 0 {
		simfn = flag.Arg(0)
	}
	if len(flag.Args()) > 1 {
		exnwl = io.Atob(flag.Arg(1))
	}
	if len(flag.Args()) > 2 {
		stgidx = io.Atoi(flag.Arg(2))
	}

	// check extension
	if io.FnExt(simfn) == "" {
		simfn += ".sim"
	}

	// print input data
	io.Pf("\nInput data\n")
	io.Pf("==========\n")
	io.Pf("  simfn   = %30s // simulation filename\n", simfn)
	io.Pf("  exnwl   = %30v // extrapolate nwl\n", exnwl)
	io.Pf("  stgidx  = %30v // stage index\n", stgidx)
	io.Pf("\n")

	// start analysis process
	out.Start(simfn, stgidx, 0)

	// global variables
	ndim = out.Dom.Msh.Ndim
	verts = out.Dom.Msh.Verts
	cells = out.Dom.Msh.Cells
	nodes = out.Dom.Nodes
	elems = out.Dom.Elems
	dirout = fem.Global.Sim.Data.DirOut
	fnkey = fem.Global.Sim.Data.FnameKey
	steady = fem.Global.Sim.Data.Steady

	// flags
	has_u := out.Dom.YandC["ux"]
	has_pl := out.Dom.YandC["pl"]
	has_pg := out.Dom.YandC["pg"]
	has_sig := out.Ipkeys["sx"]
	has_nwl := out.Ipkeys["nwlx"]
	has_p := has_pl || has_pg
	lbb := has_u && has_p
	if fem.Global.Sim.Data.NoLBB {
		lbb = false
	}

	// buffers
	pvd := make(map[string]*bytes.Buffer)
	geo := make(map[string]*bytes.Buffer)
	vtu := make(map[string]*bytes.Buffer)
	if _, ok := out.Dom.YandC["ux"]; ok {
		pvd["u"] = new(bytes.Buffer)
		geo["u"] = new(bytes.Buffer)
		vtu["u"] = new(bytes.Buffer)
	}
	if _, ok := out.Dom.YandC["fl"]; ok {
		pvd["fl"] = new(bytes.Buffer)
		geo["fl"] = new(bytes.Buffer)
		vtu["fl"] = new(bytes.Buffer)
	}
	if _, ok := out.Dom.YandC["pl"]; ok {
		pvd["pl"] = new(bytes.Buffer)
		geo["pl"] = new(bytes.Buffer)
		vtu["pl"] = new(bytes.Buffer)
	}
	if _, ok := out.Dom.YandC["pg"]; ok {
		pvd["pg"] = new(bytes.Buffer)
		geo["pg"] = new(bytes.Buffer)
		vtu["pg"] = new(bytes.Buffer)
	}
	if len(out.Ipkeys) > 0 {
		pvd["ips"] = new(bytes.Buffer)
		geo["ips"] = new(bytes.Buffer)
		vtu["ips"] = new(bytes.Buffer)
	}
	if exnwl {
		pvd["ex_nwl"] = new(bytes.Buffer)
		geo["ex_nwl"] = new(bytes.Buffer)
		vtu["ex_nwl"] = new(bytes.Buffer)
	}

	// extrapolated values keys
	extrap_keys := []string{"nwlx", "nwly"}
	if ndim == 3 {
		extrap_keys = []string{"nwlx", "nwly", "nwlz"}
	}

	// headers
	for _, b := range pvd {
		pvd_header(b)
	}

	// process results
	for tidx, t := range out.Sum.OutTimes {

		// input results into domain
		if !out.Dom.In(out.Sum, tidx, true) {
			chk.Panic("cannot load results into domain; please check log file")
		}

		// message
		io.PfWhite("time     = %g\r", t)

		// generate topology
		if tidx == 0 {
			for label, b := range geo {
				topology(b, label == "ips", lbb)
			}

			// allocate integration points values
			ipvals = make([]map[string]float64, len(out.Ipoints))
			for i, _ := range out.Ipoints {
				ipvals[i] = make(map[string]float64)
			}
		}

		// get integration points values @ time t
		for i, p := range out.Ipoints {
			vals := p.Calc(out.Dom.Sol)
			for key, val := range vals {
				ipvals[i][key] = val
			}
		}

		// compute extrapolated values
		if exnwl {
			out.ComputeExtrapolatedValues(extrap_keys)
		}

		// for each data buffer
		for label, b := range vtu {

			// reset buffer
			b.Reset()

			// points data
			if label == "ips" {
				pdata_open(b)
				if has_sig {
					pdata_write(b, "sig", skeys, true)
				}
				if has_nwl {
					pdata_write(b, "nwl", nwlkeys, true)
				}
				for key, _ := range out.Ipkeys {
					if !is_sig[key] && !is_nwl[key] {
						pdata_write(b, key, []string{key}, true)
					}
				}
				pdata_close(b)
			} else {
				pdata_open(b)
				pdata_write(b, label, label2keys[label], false)
				pdata_close(b)
			}

			// cells data
			cdata_write(b, label == "ips")

			// write vtu file
			vtu_write(geo[label], b, tidx, label)
		}

		// pvd
		for label, b := range pvd {
			pvd_line(b, tidx, t, label)
		}
	}

	// write pvd files
	for label, b := range pvd {
		pvd_write(b, label)
	}
}
Exemplo n.º 15
0
// PlotNurbsBasis plots basis functions la and lb
func PlotNurbsBasis(dirout, fn string, b *Nurbs, la, lb int) {
	npts := 41
	ndiv := 11
	if b.gnd == 1 {
		ndiv = 101
	}
	plt.Reset()
	if io.FnExt(fn) == ".eps" {
		plt.SetForEps(1.5, 500)
	} else {
		plt.SetForPng(1.5, 600, 150)
	}

	plt.Subplot(3, 2, 1)
	if b.gnd == 2 {
		b.DrawCtrl2d(false, "", "")
		b.DrawElems2d(npts, false, "", "")
	}
	t0 := time.Now()
	b.PlotBasis(la, "clip_on=0", ndiv, 0) // 0 => CalcBasis
	io.Pfcyan("time elapsed (calcbasis) = %v\n", time.Now().Sub(t0))
	if b.gnd == 2 {
		plt.Equal()
	}

	plt.Subplot(3, 2, 2)
	if b.gnd == 2 {
		b.DrawCtrl2d(false, "", "")
		b.DrawElems2d(npts, false, "", "")
	}
	b.PlotBasis(lb, "clip_on=0", ndiv, 0) // 0 => CalcBasis
	if b.gnd == 2 {
		plt.Equal()
	}

	plt.Subplot(3, 2, 3)
	if b.gnd == 2 {
		b.DrawCtrl2d(false, "", "")
		b.DrawElems2d(npts, false, "", "")
	}
	b.PlotBasis(la, "clip_on=0", ndiv, 1) // 1 => CalcBasisAndDerivs
	if b.gnd == 2 {
		plt.Equal()
	}

	plt.Subplot(3, 2, 4)
	if b.gnd == 2 {
		b.DrawCtrl2d(false, "", "")
		b.DrawElems2d(npts, false, "", "")
	}
	b.PlotBasis(lb, "clip_on=0", ndiv, 1) // 1 => CalcBasisAndDerivs
	if b.gnd == 2 {
		plt.Equal()
	}

	plt.Subplot(3, 2, 5)
	if b.gnd == 2 {
		b.DrawCtrl2d(false, "", "")
		b.DrawElems2d(npts, false, "", "")
	}
	t0 = time.Now()
	b.PlotBasis(la, "clip_on=0", ndiv, 2) // 2 => RecursiveBasis
	io.Pfcyan("time elapsed (recursive) = %v\n", time.Now().Sub(t0))
	if b.gnd == 2 {
		plt.Equal()
	}

	plt.Subplot(3, 2, 6)
	if b.gnd == 2 {
		b.DrawCtrl2d(false, "", "")
		b.DrawElems2d(npts, false, "", "")
	}
	b.PlotBasis(lb, "clip_on=0", ndiv, 2) // 2 => RecursiveBasis
	if b.gnd == 2 {
		plt.Equal()
	}

	plt.SaveD(dirout, fn)
}