Exemplo n.º 1
0
// L_YieldFunc computes the yield function value for given principal stresses (σ)
func (o *CamClayMod) L_YieldFunc(σ, α []float64) float64 {
	p, q, w := tsr.M_pqw(σ)
	M := o.CS.M(w)
	pt := o.HE.pt
	n0 := (p + pt) * (p - α[0])
	return q*q + M*M*n0
}
Exemplo n.º 2
0
// YieldFuncs computes yield function values
func (o *CamClayMod) YieldFuncs(s *State) []float64 {
	p, q, w := tsr.M_pqw(s.Sig)
	M := o.CS.M(w)
	pt := o.HE.pt
	α0 := s.Alp[0]
	n0 := (p + pt) * (p - α0)
	return []float64{q*q + M*M*n0}
}
Exemplo n.º 3
0
// InitIntVars initialises internal (secondary) variables
func (o *CamClayMod) InitIntVars(σ []float64) (s *State, err error) {

	// compute α0
	p, q, w := tsr.M_pqw(σ)
	M := o.CS.M(w)
	pt := o.HE.pt
	var α0 float64
	if math.Abs(p+pt) < 1e-8 {
		α0 = 1e-8
	} else {
		α0 = p + q*q/(M*M*(p+pt))
	}

	// set state
	nalp := 1 // alp[0] = α0 (yield surface size controller)
	s = NewState(o.Nsig, nalp, false, true)
	copy(s.Sig, σ)
	s.Alp[0] = α0 * o.ocr

	// compute initial strains
	o.HE.CalcEps0(s)
	return
}
Exemplo n.º 4
0
// Plot runs the plot generation (basic set)
func (o *Plotter) Plot(keys []string, res []*State, sts [][]float64, first, last bool) {

	// auxiliary variables
	nr := imax(len(res), len(sts))
	if nr < 1 {
		return
	}
	x := make([]float64, nr)
	y := make([]float64, nr)
	o.P = make([]float64, nr)
	o.Q = make([]float64, nr)
	o.W = make([]float64, nr)
	o.Ev = make([]float64, nr)
	o.Ed = make([]float64, nr)

	// compute invariants
	for i := 0; i < len(res); i++ {
		if len(res[i].Sig) < 4 {
			chk.Panic("number of stress components is incorrect: %d", len(res[i].Sig))
		}
		o.P[i], o.Q[i], o.W[i] = tsr.M_pqw(res[i].Sig)
	}
	nsig := len(res[0].Sig)
	devε := make([]float64, nsig)
	for i := 0; i < len(sts); i++ {
		if len(sts[i]) < 4 {
			chk.Panic("number of strain components is incorrect: %d", len(sts[i]))
		}
		_, o.Ev[i], o.Ed[i] = tsr.M_devε(devε, sts[i])
	}

	// clear previous figure
	if first {
		plt.Clf()
		plt.SplotGap(0.35, 0.35)
		if o.Hspace > 0 {
			plt.SetHspace(o.Hspace)
		}
		if o.Vspace > 0 {
			plt.SetVspace(o.Vspace)
		}
	}

	// number of points for contour
	if o.NptsPq < 2 {
		o.NptsPq = 61
	}
	if o.NptsOct < 2 {
		o.NptsOct = 41
	}
	if o.NptsSig < 2 {
		o.NptsSig = 41
	}

	// subplot variables
	o.Pidx = 1
	o.Ncol, o.Nrow = utl.BestSquare(len(keys))
	if len(keys) == 2 {
		o.Ncol, o.Nrow = 1, 2
	}
	if len(keys) == 3 {
		o.Ncol, o.Nrow = 1, 3
	}

	// do plot
	for _, key := range keys {
		o.Subplot()
		switch key {
		case "ed,q":
			o.QdivP = false
			o.Plot_ed_q(x, y, res, sts, last)
		case "ed,q/p":
			o.QdivP = true
			o.Plot_ed_q(x, y, res, sts, last)
		case "p,q":
			o.WithYs = false
			o.Plot_p_q(x, y, res, sts, last)
		case "p,q,ys":
			o.WithYs = true
			o.Plot_p_q(x, y, res, sts, last)
		case "ed,ev":
			o.Plot_ed_ev(x, y, res, sts, last)
		case "p,ev":
			o.LogP = false
			o.Plot_p_ev(x, y, res, sts, last)
		case "log(p),ev":
			o.LogP = true
			o.Plot_p_ev(x, y, res, sts, last)
		case "i,f":
			o.Plot_i_f(x, y, res, sts, last)
		case "i,alp":
			o.Plot_i_alp(x, y, res, sts, last)
		case "Dgam,f":
			o.Plot_Dgam_f(x, y, res, sts, last)
		case "oct":
			o.WithYs = false
			o.Plot_oct(x, y, res, sts, last)
		case "oct,ys":
			o.WithYs = true
			o.Plot_oct(x, y, res, sts, last)
		case "s3,s1":
			o.WithYs = false
			o.Plot_s3_s1(x, y, res, sts, last)
		case "s3,s1,ys":
			o.WithYs = true
			o.Plot_s3_s1(x, y, res, sts, last)
		case "empty":
			continue
		default:
			chk.Panic("cannot handle key=%q", key)
		}
		if o.Split && last {
			o.Save("_", key)
		}
	}

	// save figure
	if !o.Split && last {
		o.Save("", "")
	}
}