Exemplo n.º 1
0
// updateCond updates the stored condition number of the matrix. Norm is the
// norm of the original matrix. If norm is negative it will be estimated.
func (lu *LU) updateCond(norm float64) {
	n := lu.lu.mat.Cols
	work := make([]float64, 4*n)
	iwork := make([]int, n)
	if norm < 0 {
		// This is an approximation. By the definition of a norm, ||AB|| <= ||A|| ||B||.
		// The condition number is ||A|| || A^-1||, so this will underestimate
		// the condition number somewhat.
		// The norm of the original factorized matrix cannot be stored because of
		// update possibilities, e.g. RankOne.
		u := lu.lu.asTriDense(n, blas.NonUnit, blas.Upper)
		l := lu.lu.asTriDense(n, blas.Unit, blas.Lower)
		unorm := lapack64.Lantr(matrix.CondNorm, u.mat, work)
		lnorm := lapack64.Lantr(matrix.CondNorm, l.mat, work)
		norm = unorm * lnorm
	}
	v := lapack64.Gecon(matrix.CondNorm, lu.lu.mat, norm, work, iwork)
	lu.cond = 1 / v
}
Exemplo n.º 2
0
// updateCond updates the condition number of the Cholesky decomposition. If
// norm > 0, then that norm is used as the norm of the original matrix A, otherwise
// the norm is estimated from the decompositon.
func (c *Cholesky) updateCond(norm float64) {
	n := c.chol.mat.N
	work := make([]float64, 3*n)
	if norm < 0 {
		// This is an approximation. By the definition of a norm, ||AB|| <= ||A|| ||B||.
		// Here, A = U^T * U.
		// The condition number is ||A|| || A^-1||, so this will underestimate
		// the condition number somewhat.
		// The norm of the original factorized matrix cannot be stored because of
		// update possibilites.
		unorm := lapack64.Lantr(matrix.CondNorm, c.chol.mat, work)
		lnorm := lapack64.Lantr(matrix.CondNormTrans, c.chol.mat, work)
		norm = unorm * lnorm
	}
	sym := c.chol.asSymBlas()
	iwork := make([]int, n)
	v := lapack64.Pocon(sym, norm, work, iwork)
	c.cond = 1 / v
}
Exemplo n.º 3
0
// Norm returns the specified (induced) norm of the matrix a. See
// https://en.wikipedia.org/wiki/Matrix_norm for the definition of an induced norm.
//
// Valid norms are:
//    1 - The maximum absolute column sum
//    2 - Frobenius norm, the square root of the sum of the squares of the elements.
//  Inf - The maximum absolute row sum.
// Norm will panic with ErrNormOrder if an illegal norm order is specified.
func Norm(a Matrix, norm float64) float64 {
	r, c := a.Dims()
	aMat, aTrans := untranspose(a)
	var work []float64
	switch rma := aMat.(type) {
	case RawMatrixer:
		rm := rma.RawMatrix()
		n := normLapack(norm, aTrans)
		if n == lapack.MaxColumnSum {
			work = make([]float64, rm.Cols)
		}
		return lapack64.Lange(n, rm, work)
	case RawTriangular:
		rm := rma.RawTriangular()
		n := normLapack(norm, aTrans)
		if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
			work = make([]float64, rm.N)
		}
		return lapack64.Lantr(n, rm, work)
	case RawSymmetricer:
		rm := rma.RawSymmetric()
		n := normLapack(norm, aTrans)
		if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
			work = make([]float64, rm.N)
		}
		return lapack64.Lansy(n, rm, work)
	}
	switch norm {
	default:
		panic("unreachable")
	case 1:
		var max float64
		for j := 0; j < c; j++ {
			var sum float64
			for i := 0; i < r; i++ {
				sum += math.Abs(a.At(i, j))
			}
			if sum > max {
				max = sum
			}
		}
		return max
	case 2:
		var sum float64
		for i := 0; i < r; i++ {
			for j := 0; j < c; j++ {
				v := a.At(i, j)
				sum += v * v
			}
		}
		return math.Sqrt(sum)
	case math.Inf(1):
		var max float64
		for i := 0; i < r; i++ {
			var sum float64
			for j := 0; j < c; j++ {
				sum += math.Abs(a.At(i, j))
			}
			if sum > max {
				max = sum
			}
		}
		return max
	}
}
Exemplo n.º 4
0
// Norm returns the specified (induced) norm of the matrix a. See
// https://en.wikipedia.org/wiki/Matrix_norm for the definition of an induced norm.
//
// Valid norms are:
//    1 - The maximum absolute column sum
//    2 - Frobenius norm, the square root of the sum of the squares of the elements.
//  Inf - The maximum absolute row sum.
// Norm will panic with ErrNormOrder if an illegal norm order is specified and
// with matrix.ErrShape if the matrix has zero size.
func Norm(a Matrix, norm float64) float64 {
	r, c := a.Dims()
	if r == 0 || c == 0 {
		panic(matrix.ErrShape)
	}
	aU, aTrans := untranspose(a)
	var work []float64
	switch rma := aU.(type) {
	case RawMatrixer:
		rm := rma.RawMatrix()
		n := normLapack(norm, aTrans)
		if n == lapack.MaxColumnSum {
			work = make([]float64, rm.Cols)
		}
		return lapack64.Lange(n, rm, work)
	case RawTriangular:
		rm := rma.RawTriangular()
		n := normLapack(norm, aTrans)
		if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
			work = make([]float64, rm.N)
		}
		return lapack64.Lantr(n, rm, work)
	case RawSymmetricer:
		rm := rma.RawSymmetric()
		n := normLapack(norm, aTrans)
		if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
			work = make([]float64, rm.N)
		}
		return lapack64.Lansy(n, rm, work)
	case *Vector:
		rv := rma.RawVector()
		switch norm {
		default:
			panic("unreachable")
		case 1:
			if aTrans {
				imax := blas64.Iamax(rma.n, rv)
				return math.Abs(rma.At(imax, 0))
			}
			return blas64.Asum(rma.n, rv)
		case 2:
			return blas64.Nrm2(rma.n, rv)
		case math.Inf(1):
			if aTrans {
				return blas64.Asum(rma.n, rv)
			}
			imax := blas64.Iamax(rma.n, rv)
			return math.Abs(rma.At(imax, 0))
		}
	}
	switch norm {
	default:
		panic("unreachable")
	case 1:
		var max float64
		for j := 0; j < c; j++ {
			var sum float64
			for i := 0; i < r; i++ {
				sum += math.Abs(a.At(i, j))
			}
			if sum > max {
				max = sum
			}
		}
		return max
	case 2:
		var sum float64
		for i := 0; i < r; i++ {
			for j := 0; j < c; j++ {
				v := a.At(i, j)
				sum += v * v
			}
		}
		return math.Sqrt(sum)
	case math.Inf(1):
		var max float64
		for i := 0; i < r; i++ {
			var sum float64
			for j := 0; j < c; j++ {
				sum += math.Abs(a.At(i, j))
			}
			if sum > max {
				max = sum
			}
		}
		return max
	}
}