Exemplo n.º 1
0
func MakeData(M, N, P int, randomData, diagonal bool) (A, B, C *matrix.FloatMatrix) {

	if diagonal && M != N {
		diagonal = false
		fmt.Printf("cannot make diagonal if B.rows != B.cols\n")
	}

	if randomData {
		A = matrix.FloatNormal(M, P)
		if diagonal {
			d := matrix.FloatNormal(P, 1)
			B := matrix.FloatDiagonal(P, 0.0)
			B.SetIndexesFromArray(d.FloatArray(), matrix.DiagonalIndexes(B)...)
		} else {
			B = matrix.FloatNormal(P, N)
		}
	} else {
		A = matrix.FloatWithValue(M, P, 1.0)
		if diagonal {
			B = matrix.FloatDiagonal(P, 1.0)
		} else {
			B = matrix.FloatWithValue(P, N, 1.0)
		}
	}
	C = matrix.FloatZeros(M, N)
	return
}
Exemplo n.º 2
0
func main() {
	flag.Parse()
	if len(spPath) > 0 {
		checkpnt.Reset(spPath)
		checkpnt.Activate()
		checkpnt.Verbose(spVerbose)
		checkpnt.Format("%.17f")
	}

	adata := [][]float64{
		[]float64{0.3, -0.4, -0.2, -0.4, 1.3},
		[]float64{0.6, 1.2, -1.7, 0.3, -0.3},
		[]float64{-0.3, 0.0, 0.6, -1.2, -2.0}}

	A := matrix.FloatMatrixFromTable(adata, matrix.ColumnOrder)
	b := matrix.FloatVector([]float64{1.5, 0.0, -1.2, -0.7, 0.0})

	_, n := A.Size()
	N := n + 1 + n

	h := matrix.FloatZeros(N, 1)
	h.SetIndex(n, 1.0)

	I0 := matrix.FloatDiagonal(n, -1.0)
	I1 := matrix.FloatIdentity(n)
	G, _ := matrix.FloatMatrixStacked(matrix.StackDown, I0, matrix.FloatZeros(1, n), I1)

	At := A.Transpose()
	P := At.Times(A)
	q := At.Times(b).Scale(-1.0)

	dims := sets.NewDimensionSet("l", "q", "s")
	dims.Set("l", []int{n})
	dims.Set("q", []int{n + 1})

	var solopts cvx.SolverOptions
	solopts.MaxIter = 20
	solopts.ShowProgress = true
	if maxIter > 0 {
		solopts.MaxIter = maxIter
	}
	if len(solver) > 0 {
		solopts.KKTSolverName = solver
	}
	sol, err := cvx.ConeQp(P, q, G, h, nil, nil, dims, &solopts, nil)
	if err == nil {
		x := sol.Result.At("x")[0]
		s := sol.Result.At("s")[0]
		z := sol.Result.At("z")[0]
		fmt.Printf("Optimal\n")
		fmt.Printf("x=\n%v\n", x.ToString("%.9f"))
		fmt.Printf("s=\n%v\n", s.ToString("%.9f"))
		fmt.Printf("z=\n%v\n", z.ToString("%.9f"))
		check(x, s, z)
	}

}
Exemplo n.º 3
0
func (p *acenterProg) F2(x, z *matrix.FloatMatrix) (f, Df, H *matrix.FloatMatrix, err error) {
	f, Df, err = p.F1(x)
	u := matrix.Pow(x, 2.0).Scale(-1.0).Add(1.0)
	z0 := z.GetIndex(0)
	u2 := matrix.Pow(u, 2.0)
	hd := matrix.Div(matrix.Add(u2, 1.0), u2).Scale(2 * z0)
	H = matrix.FloatDiagonal(hd.NumElements(), hd.FloatArray()...)
	return
}
Exemplo n.º 4
0
func (p *floorPlan) F2(x, z *matrix.FloatMatrix) (f, Df, H *matrix.FloatMatrix, err error) {
	f, Df, err = p.F1(x)
	x17 := matrix.FloatVector(x.FloatArray()[17:])
	tmp := matrix.Div(p.Amin, matrix.Pow(x17, 3.0))
	tmp = matrix.Mul(z, tmp).Scale(2.0)
	diag := matrix.FloatDiagonal(5, tmp.FloatArray()...)
	H = matrix.FloatZeros(22, 22)
	H.SetSubMatrix(17, 17, diag)
	return
}
Exemplo n.º 5
0
func (p *floorPlan) F1(x *matrix.FloatMatrix) (f, Df *matrix.FloatMatrix, err error) {
	err = nil
	mn := x.Min(-1, -2, -3, -4, -5)
	if mn <= 0.0 {
		f, Df = nil, nil
		return
	}
	zeros := matrix.FloatZeros(5, 12)
	dk1 := matrix.FloatDiagonal(5, -1.0)
	dk2 := matrix.FloatZeros(5, 5)
	x17 := matrix.FloatVector(x.FloatArray()[17:])
	// -( Amin ./ (x17 .* x17) )
	diag := matrix.Div(p.Amin, matrix.Mul(x17, x17)).Scale(-1.0)
	dk2.SetIndexesFromArray(diag.FloatArray(), matrix.MakeDiagonalSet(5)...)
	Df, _ = matrix.FloatMatrixStacked(matrix.StackRight, zeros, dk1, dk2)

	x12 := matrix.FloatVector(x.FloatArray()[12:17])
	// f = -x[12:17] + div(Amin, x[17:]) == div(Amin, x[17:]) - x[12:17]
	f = matrix.Minus(matrix.Div(p.Amin, x17), x12)
	return
}
Exemplo n.º 6
0
func TestInvLower(t *testing.T) {
	N := 36
	nb := 12
	A := matrix.FloatUniformSymmetric(N, matrix.Lower)
	I := matrix.FloatDiagonal(N, 1.0)
	I0 := matrix.FloatZeros(N, N)

	A0 := A.Copy()
	// A0 = A.-1
	InverseTrm(A0, LOWER, 0)
	Mult(I0, A, A0, 1.0, 0.0, NOTRANS)
	I0.Minus(I)
	nrm := NormP(I0, NORM_ONE)
	t.Logf("unblk: ||I - A*A.-1||_1 : %e\n", nrm)

	A0 = A.Copy()
	// A0 = A.-1
	InverseTrm(A0, LOWER, nb)
	Mult(I0, A, A0, 1.0, 0.0, NOTRANS)
	I0.Minus(I)
	nrm = NormP(I0, NORM_ONE)
	t.Logf("blk:   ||I - A*A.-1||_1 : %e\n", nrm)
}
Exemplo n.º 7
0
func main() {

	Sdata := [][]float64{
		[]float64{4e-2, 6e-3, -4e-3, 0.0},
		[]float64{6e-3, 1e-2, 0.0, 0.0},
		[]float64{-4e-3, 0.0, 2.5e-3, 0.0},
		[]float64{0.0, 0.0, 0.0, 0.0}}

	pbar := matrix.FloatVector([]float64{.12, .10, .07, .03})
	S := matrix.FloatMatrixFromTable(Sdata)
	n := pbar.Rows()
	G := matrix.FloatDiagonal(n, -1.0)
	h := matrix.FloatZeros(n, 1)
	A := matrix.FloatWithValue(1, n, 1.0)
	b := matrix.FloatNew(1, 1, []float64{1.0})

	var solopts cvx.SolverOptions
	solopts.MaxIter = 30
	solopts.ShowProgress = true

	mu := 1.0
	Smu := matrix.Scale(S, mu)
	pbarNeg := matrix.Scale(pbar, -1.0)
	fmt.Printf("Smu=\n%v\n", Smu.String())
	fmt.Printf("-pbar=\n%v\n", pbarNeg.String())

	sol, err := cvx.Qp(Smu, pbarNeg, G, h, A, b, &solopts, nil)

	fmt.Printf("status: %v\n", err)
	if sol != nil && sol.Status == cvx.Optimal {
		x := sol.Result.At("x")[0]
		ret := blas.DotFloat(x, pbar)
		risk := math.Sqrt(blas.DotFloat(x, S.Times(x)))
		fmt.Printf("ret=%.3f, risk=%.3f\n", ret, risk)
		fmt.Printf("x=\n%v\n", x)
	}
}
Exemplo n.º 8
0
func main() {
	flag.Parse()

	m := len(udata)
	nvars := 2 * m
	u := matrix.FloatVector(udata[:m])
	y := matrix.FloatVector(ydata[:m])

	// minimize    (1/2) * || yhat - y ||_2^2
	// subject to  yhat[j] >= yhat[i] + g[i]' * (u[j] - u[i]), j, i = 0,...,m-1
	//
	// Variables  yhat (m), g (m).

	P := matrix.FloatZeros(nvars, nvars)
	// set m first diagonal indexes to 1.0
	//P.SetIndexes(1.0, matrix.DiagonalIndexes(P)[:m]...)
	P.Diag().SubMatrix(0, 0, 1, m).SetIndexes(1.0)
	q := matrix.FloatZeros(nvars, 1)
	q.SubMatrix(0, 0, y.NumElements(), 1).Plus(matrix.Scale(y, -1.0))

	// m blocks (i = 0,...,m-1) of linear inequalities
	//
	//     yhat[i] + g[i]' * (u[j] - u[i]) <= yhat[j], j = 0,...,m-1.

	G := matrix.FloatZeros(m*m, nvars)
	I := matrix.FloatDiagonal(m, 1.0)

	for i := 0; i < m; i++ {
		// coefficients of yhat[i] (column i)
		//G.Set(1.0, matrix.ColumnIndexes(G, i)[i*m:(i+1)*m]...)
		column(G, i).SetIndexes(1.0)

		// coefficients of gi[i] (column i, rows i*m ... (i+1)*m)
		//rows := matrix.Indexes(i*m, (i+1)*m)
		//G.SetAtColumnArray(m+i, rows, matrix.Add(u, -u.GetIndex(i)).FloatArray())

		// coefficients of gi[i] (column i, rows i*m ... (i+1)*m)
		// from column m+i staring at row i*m select m rows and one column
		G.SubMatrix(i*m, m+i, m, 1).Plus(matrix.Add(u, -u.GetIndex(i)))

		// coeffients of yhat[i]) from rows i*m ... (i+1)*m, cols 0 ... m
		//G.SetSubMatrix(i*m, 0, matrix.Minus(G.GetSubMatrix(i*m, 0, m, m), I))
		G.SubMatrix(i*m, 0, m, m).Minus(I)
	}

	h := matrix.FloatZeros(m*m, 1)
	var A, b *matrix.FloatMatrix = nil, nil
	var solopts cvx.SolverOptions
	solopts.ShowProgress = true
	solopts.KKTSolverName = solver

	sol, err := cvx.Qp(P, q, G, h, A, b, &solopts, nil)
	if err != nil {
		fmt.Printf("error: %v\n", err)
		return
	}
	if sol != nil && sol.Status != cvx.Optimal {
		fmt.Printf("status not optimal\n")
		return
	}
	x := sol.Result.At("x")[0]
	//yhat := matrix.FloatVector(x.FloatArray()[:m])
	//g := matrix.FloatVector(x.FloatArray()[m:])
	yhat := x.SubMatrix(0, 0, m, 1).Copy()
	g := x.SubMatrix(m, 0).Copy()

	rangeFunc := func(n int) []float64 {
		r := make([]float64, 0)
		for i := 0; i < n; i++ {
			r = append(r, float64(i)*2.2/float64(n))
		}
		return r
	}
	ts := rangeFunc(1000)
	fitFunc := func(points []float64) []float64 {
		res := make([]float64, len(points))
		for k, t := range points {
			res[k] = matrix.Plus(yhat, matrix.Mul(g, matrix.Scale(u, -1.0).Add(t))).Max()
		}
		return res
	}
	fs := fitFunc(ts)
	plotData("cvxfit.png", u.FloatArray(), y.FloatArray(), ts, fs)
}
Exemplo n.º 9
0
func TestConeQp(t *testing.T) {
	adata := [][]float64{
		[]float64{0.3, -0.4, -0.2, -0.4, 1.3},
		[]float64{0.6, 1.2, -1.7, 0.3, -0.3},
		[]float64{-0.3, 0.0, 0.6, -1.2, -2.0}}

	// reference values from cvxopt coneqp.py
	xref := []float64{0.72558318685981904, 0.61806264311119252, 0.30253527966423444}
	sref := []float64{
		0.72558318685981904, 0.61806264311119263,
		0.30253527966423449, 1.00000000000041678,
		-0.72558318686012169, -0.61806264311145032,
		-0.30253527966436067}
	zref := []float64{
		0.00000003332583626, 0.00000005116586239,
		0.00000009993673262, 0.56869648433154019,
		0.41264857754144563, 0.35149286573190930,
		0.17201618570052318}

	A := matrix.FloatMatrixFromTable(adata, matrix.ColumnOrder)
	b := matrix.FloatVector([]float64{1.5, 0.0, -1.2, -0.7, 0.0})

	_, n := A.Size()
	N := n + 1 + n

	h := matrix.FloatZeros(N, 1)
	h.SetIndex(n, 1.0)

	I0 := matrix.FloatDiagonal(n, -1.0)
	I1 := matrix.FloatIdentity(n)
	G, _ := matrix.FloatMatrixStacked(matrix.StackDown, I0, matrix.FloatZeros(1, n), I1)

	At := A.Transpose()
	P := matrix.Times(At, A)
	q := matrix.Times(At, b).Scale(-1.0)

	dims := sets.DSetNew("l", "q", "s")
	dims.Set("l", []int{n})
	dims.Set("q", []int{n + 1})

	var solopts SolverOptions
	solopts.MaxIter = 10
	solopts.ShowProgress = false
	sol, err := ConeQp(P, q, G, h, nil, nil, dims, &solopts, nil)
	if err == nil {
		fail := false
		x := sol.Result.At("x")[0]
		s := sol.Result.At("s")[0]
		z := sol.Result.At("z")[0]
		t.Logf("Optimal\n")
		t.Logf("x=\n%v\n", x.ToString("%.9f"))
		t.Logf("s=\n%v\n", s.ToString("%.9f"))
		t.Logf("z=\n%v\n", z.ToString("%.9f"))
		xe, _ := nrmError(matrix.FloatVector(xref), x)
		if xe > TOL {
			t.Logf("x differs [%.3e] from exepted too much.", xe)
			fail = true
		}
		se, _ := nrmError(matrix.FloatVector(sref), s)
		if se > TOL {
			t.Logf("s differs [%.3e] from exepted too much.", se)
			fail = true
		}
		ze, _ := nrmError(matrix.FloatVector(zref), z)
		if ze > TOL {
			t.Logf("z differs [%.3e] from exepted too much.", ze)
			fail = true
		}
		if fail {
			t.Fail()
		}
	}

}