Exemplo n.º 1
0
// Draw draws a plot to a draw.Canvas.
//
// Plotters are drawn in the order in which they were
// added to the plot.  Plotters that  implement the
// GlyphBoxer interface will have their GlyphBoxes
// taken into account when padding the plot so that
// none of their glyphs are clipped.
func (p *Plot) Draw(c draw.Canvas) {
	if p.BackgroundColor != nil {
		c.SetColor(p.BackgroundColor)
		c.Fill(c.Rectangle.Path())
	}
	if p.Title.Text != "" {
		c.FillText(p.Title.TextStyle, c.Center().X, c.Max.Y, -0.5, -1, p.Title.Text)
		c.Max.Y -= p.Title.Height(p.Title.Text) - p.Title.Font.Extents().Descent
		c.Max.Y -= p.Title.Padding
	}

	p.X.sanitizeRange()
	x := horizontalAxis{p.X}
	p.Y.sanitizeRange()
	y := verticalAxis{p.Y}

	ywidth := y.size()
	x.draw(padX(p, c.Crop(ywidth, 0, 0, 0)))
	xheight := x.size()
	y.draw(padY(p, c.Crop(0, xheight, 0, 0)))

	dataC := padY(p, padX(p, c.Crop(ywidth, xheight, 0, 0)))
	for _, data := range p.plotters {
		data.Plot(dataC, p)
	}

	p.Legend.draw(c.Crop(ywidth, 0, 0, 0).Crop(0, xheight, 0, 0))
}
Exemplo n.º 2
0
// DrawGlyphBoxes draws red outlines around the plot's
// GlyphBoxes.  This is intended for debugging.
func (p *Plot) DrawGlyphBoxes(c *draw.Canvas) {
	c.SetColor(color.RGBA{R: 255, A: 255})
	for _, b := range p.GlyphBoxes(p) {
		b.Rectangle.Min.X += c.X(b.X)
		b.Rectangle.Min.Y += c.Y(b.Y)
		c.Stroke(b.Rectangle.Path())
	}
}
Exemplo n.º 3
0
// Plot implements the Plot method of the plot.Plotter interface.
func (h *Contour) Plot(c draw.Canvas, plt *plot.Plot) {
	if naive {
		h.naivePlot(c, plt)
		return
	}

	var pal []color.Color
	if h.Palette != nil {
		pal = h.Palette.Colors()
	}

	trX, trY := plt.Transforms(&c)

	// Collate contour paths and draw them.
	//
	// The alternative naive approach is to draw each line segment as
	// conrec returns it. The integrated path approach allows graphical
	// optimisations and is necessary for contour fill shading.
	cp := contourPaths(h.GridXYZ, h.Levels, trX, trY)

	// ps is a palette scaling factor to scale the palette uniformly
	// across the given levels. This enables a discordance between the
	// number of colours and the number of levels. Sorting is not
	// necessary since contourPaths sorts the levels as a side effect.
	ps := float64(len(pal)-1) / (h.Levels[len(h.Levels)-1] - h.Levels[0])
	if len(h.Levels) == 1 {
		ps = 0
	}

	for i, z := range h.Levels {
		if math.IsNaN(z) {
			continue
		}
		for _, pa := range cp[z] {
			if isLoop(pa) {
				pa.Close()
			}

			style := h.LineStyles[i%len(h.LineStyles)]
			var col color.Color
			switch {
			case z < h.Min:
				col = h.Underflow
			case z > h.Max:
				col = h.Overflow
			case len(pal) == 0:
				col = style.Color
			default:
				col = pal[int((z-h.Levels[0])*ps+0.5)] // Apply palette scaling.
			}
			if col != nil && style.Width != 0 {
				c.SetLineStyle(style)
				c.SetColor(col)
				c.Stroke(pa)
			}
		}
	}
}
Exemplo n.º 4
0
// Plot implements the Plot method of the plot.Plotter interface.
func (bs *Bubbles) Plot(c draw.Canvas, plt *plot.Plot) {
	trX, trY := plt.Transforms(&c)

	c.SetColor(bs.Color)

	for _, d := range bs.XYZs {
		x := trX(d.X)
		y := trY(d.Y)
		if !c.Contains(draw.Point{x, y}) {
			continue
		}

		rad := bs.radius(d.Z)

		// draw a circle centered at x, y
		var p vg.Path
		p.Move(x+rad, y)
		p.Arc(x, y, rad, 0, 2*math.Pi)
		p.Close()
		c.Fill(p)
	}
}
Exemplo n.º 5
0
// Plot draws the Line, implementing the plot.Plotter
// interface.
func (pts *Line) Plot(c draw.Canvas, plt *plot.Plot) {
	trX, trY := plt.Transforms(&c)
	ps := make([]draw.Point, len(pts.XYs))

	for i, p := range pts.XYs {
		ps[i].X = trX(p.X)
		ps[i].Y = trY(p.Y)
	}

	if pts.ShadeColor != nil && len(ps) > 0 {
		c.SetColor(*pts.ShadeColor)
		minY := trY(plt.Y.Min)
		var pa vg.Path
		pa.Move(ps[0].X, minY)
		for i := range pts.XYs {
			pa.Line(ps[i].X, ps[i].Y)
		}
		pa.Line(ps[len(pts.XYs)-1].X, minY)
		pa.Close()
		c.Fill(pa)
	}

	c.StrokeLines(pts.LineStyle, c.ClipLinesXY(ps)...)
}
Exemplo n.º 6
0
// Plot implements the Plot method of the plot.Plotter interface.
func (h *HeatMap) Plot(c draw.Canvas, plt *plot.Plot) {
	pal := h.Palette.Colors()
	if len(pal) == 0 {
		panic("heatmap: empty palette")
	}
	// ps scales the palette uniformly across the data range.
	ps := float64(len(pal)-1) / (h.Max - h.Min)

	trX, trY := plt.Transforms(&c)

	var pa vg.Path
	cols, rows := h.GridXYZ.Dims()
	for i := 0; i < cols; i++ {

		var right, left float64
		switch i {
		case 0:
			right = (h.GridXYZ.X(i+1) - h.GridXYZ.X(i)) / 2
			left = -right
		case cols - 1:
			right = (h.GridXYZ.X(i) - h.GridXYZ.X(i-1)) / 2
			left = -right
		default:
			right = (h.GridXYZ.X(i+1) - h.GridXYZ.X(i)) / 2
			left = -(h.GridXYZ.X(i) - h.GridXYZ.X(i-1)) / 2
		}

		for j := 0; j < rows; j++ {
			v := h.GridXYZ.Z(i, j)
			if math.IsNaN(v) || math.IsInf(v, 0) {
				continue
			}

			pa = pa[:0]

			var up, down float64
			switch j {
			case 0:
				up = (h.GridXYZ.Y(j+1) - h.GridXYZ.Y(j)) / 2
				down = -up
			case rows - 1:
				up = (h.GridXYZ.Y(j) - h.GridXYZ.Y(j-1)) / 2
				down = -up
			default:
				up = (h.GridXYZ.Y(j+1) - h.GridXYZ.Y(j)) / 2
				down = -(h.GridXYZ.Y(j) - h.GridXYZ.Y(j-1)) / 2
			}

			x, y := trX(h.GridXYZ.X(i)+left), trY(h.GridXYZ.Y(j)+down)
			dx, dy := trX(h.GridXYZ.X(i)+right), trY(h.GridXYZ.Y(j)+up)

			if !c.Contains(draw.Point{x, y}) || !c.Contains(draw.Point{dx, dy}) {
				continue
			}

			pa.Move(x, y)
			pa.Line(dx, y)
			pa.Line(dx, dy)
			pa.Line(x, dy)
			pa.Close()

			var col color.Color
			switch {
			case v < h.Min:
				col = h.Underflow
			case v > h.Max:
				col = h.Overflow
			default:
				col = pal[int((v-h.Min)*ps+0.5)] // Apply palette scaling.
			}
			if col != nil {
				c.SetColor(col)
				c.Fill(pa)
			}
		}
	}
}
Exemplo n.º 7
0
// naivePlot implements the a naive rendering approach for contours.
// It is here as a debugging mode since it simply draws line segments
// generated by conrec without further computation.
func (h *Contour) naivePlot(c draw.Canvas, plt *plot.Plot) {
	var pal []color.Color
	if h.Palette != nil {
		pal = h.Palette.Colors()
	}

	trX, trY := plt.Transforms(&c)

	// Sort levels prior to palette scaling since we can't depend on
	// sorting as a side effect from calling contourPaths.
	sort.Float64s(h.Levels)
	// ps is a palette scaling factor to scale the palette uniformly
	// across the given levels. This enables a discordance between the
	// number of colours and the number of levels.
	ps := float64(len(pal)-1) / (h.Levels[len(h.Levels)-1] - h.Levels[0])
	if len(h.Levels) == 1 {
		ps = 0
	}

	levelMap := make(map[float64]int)
	for i, z := range h.Levels {
		levelMap[z] = i
	}

	// Draw each line segment as conrec generates it.
	var pa vg.Path
	conrec(h.GridXYZ, h.Levels, func(_, _ int, l line, z float64) {
		if math.IsNaN(z) {
			return
		}

		pa = pa[:0]

		x1, y1 := trX(l.p1.X), trY(l.p1.Y)
		x2, y2 := trX(l.p2.X), trY(l.p2.Y)

		if !c.Contains(draw.Point{x1, y1}) || !c.Contains(draw.Point{x2, y2}) {
			return
		}

		pa.Move(x1, y1)
		pa.Line(x2, y2)
		pa.Close()

		style := h.LineStyles[levelMap[z]%len(h.LineStyles)]
		var col color.Color
		switch {
		case z < h.Min:
			col = h.Underflow
		case z > h.Max:
			col = h.Overflow
		case len(pal) == 0:
			col = style.Color
		default:
			col = pal[int((z-h.Levels[0])*ps+0.5)] // Apply palette scaling.
		}
		if col != nil && style.Width != 0 {
			c.SetLineStyle(style)
			c.SetColor(col)
			c.Stroke(pa)
		}
	})
}