Exemplo n.º 1
0
func EnvSplitTcB(baseEnv *tempAll.Environment, TcFactors, BeFields []float64, epsAbs, epsRel float64) ([]*tempAll.Environment, error) {
	TcEnv := baseEnv.Copy()
	TcEnv.Be_field = 0.0
	TcEnv.Mu_b = 0.0
	_, err := tempCrit.CritTempSolve(TcEnv, epsAbs, epsRel)
	if err != nil {
		return nil, err
	}
	Tc := 1.0 / TcEnv.Beta
	omegaFit, err := tempCrit.OmegaFit(TcEnv, tempCrit.OmegaPlus)
	if err != nil {
		return nil, err
	}
	TcEnv.A, TcEnv.B = omegaFit[0], omegaFit[2]
	TcEnv.PairCoeffsReady = true

	result := []*tempAll.Environment{}
	for _, TcFactor := range TcFactors {
		env := TcEnv.Copy()
		T := TcFactor * Tc
		env.Beta = 1.0 / T
		env.Temp = T
		// fix (D1, Mu_h) appropriate for Beta
		//_, err := SolveD1Mu_h(env, epsAbs, epsRel)
		_, err := SolveD1Mu_hMu_b(env, epsAbs, epsRel)
		if err != nil {
			return nil, err
		}
		// keep (D1, Mu_h) independent of magnetic field
		BeNum := len(BeFields)
		thisEnv_BeSplit := env.MultiSplit([]string{"Be_field"}, []int{BeNum}, []float64{BeFields[0]}, []float64{BeFields[BeNum-1]})
		result = append(result, thisEnv_BeSplit...)
	}
	return result, nil
}
Exemplo n.º 2
0
// Solve the (D1, Mu_h, Beta) system with x and F0 fixed.
func D1MuBetaSolve(env *tempAll.Environment, epsAbs, epsRel float64) (vec.Vector, error) {
	// our guess for beta should be above beta_c
	if env.A == 0.0 && env.B == 0.0 {
		D1, Mu_h, F0 := env.D1, env.Mu_h, env.F0
		env.F0 = 0.0 // F0 is 0 at T_c
		_, err := tempCrit.CritTempSolve(env, epsAbs, epsRel)
		if err != nil {
			return nil, err
		}
		fmt.Printf("%v; Tc = %f\n", env, 1.0/env.Beta)
		omegaFit, err := tempCrit.OmegaFit(env, tempCrit.OmegaPlus)
		if err != nil {
			return nil, err
		}
		env.A, env.B = omegaFit[0], omegaFit[2]
		env.PairCoeffsReady = true
		env.Beta += 0.1
		// we are at T < T_c; uncache env
		env.D1, env.Mu_h, env.F0 = D1, Mu_h, F0
	}
	//fmt.Printf("%v; Tc = %f\n", env, 1.0 / env.Beta)
	// solve low temp system for reasonable values of D1 and Mu_h first
	_, err := D1MuSolve(env, epsAbs, epsRel)
	if err != nil {
		return nil, err
	}
	// solve the full low temp system
	system, start := D1MuBetaSystem(env)
	solution, err := solve.MultiDim(system, start, epsAbs, epsRel)
	if err != nil {
		return nil, err
	}
	return solution, nil
}
Exemplo n.º 3
0
// Solve the (D1, Mu_h, F0) system with x and Beta fixed.
func D1MuF0Solve(env *tempAll.Environment, epsAbs, epsRel float64) (vec.Vector, error) {
	if env.A == 0.0 && env.B == 0.0 {
		// We must have T < T_c < T_p (Beta > Beta_c > Beta_p).
		// Getting Beta_p is fast, so do that first.
		D1, Mu_h, F0, Beta := env.F0, env.Mu_h, env.F0, env.Beta // cache env
		env.F0 = 0.0                                             // F0 is 0 at T_c and T_p
		_, err := tempPair.PairTempSolve(env, epsAbs, epsRel)
		if err != nil {
			return nil, err
		}
		if Beta < env.Beta {
			return nil, fmt.Errorf("Beta = %f less than Beta_p in env %s", Beta, env.String())
		}
		_, err = tempCrit.CritTempSolve(env, epsAbs, epsRel)
		if err != nil {
			return nil, err
		}
		if Beta < env.Beta {
			return nil, fmt.Errorf("Beta = %f less than Beta_c in env %s", Beta, env.String())
		}
		fmt.Printf("%v; Tc = %f\n", env, 1.0/env.Beta)
		omegaFit, err := tempCrit.OmegaFit(env, tempCrit.OmegaPlus)
		if err != nil {
			return nil, err
		}
		env.A, env.B = omegaFit[0], omegaFit[2]
		env.PairCoeffsReady = true
		// we are at T < T_c; uncache env
		env.D1, env.Mu_h, env.F0, env.Beta = D1, Mu_h, F0, Beta
	}
	// solve low temp system for reasonable values of D1 and Mu_h first
	_, err := D1MuSolve(env, epsAbs, epsRel)
	if err != nil {
		return nil, err
	}
	// solve the full low temp system
	system, start := D1MuF0System(env)
	solution, err := solve.MultiDim(system, start, epsAbs, epsRel)
	if err != nil {
		return nil, err
	}
	return solution, nil
}
Exemplo n.º 4
0
// Solve the (D1, Mu_h, Beta) system with x and Mu_b fixed.
func FlucTempSolve(env *tempAll.Environment, epsAbs, epsRel float64) (vec.Vector, error) {
	// fix pair coefficients
	if env.A == 0.0 && env.B == 0.0 && env.FixedPairCoeffs {
		D1, Mu_h, Mu_b, Beta := env.D1, env.Mu_h, env.Mu_b, env.Beta
		env.Mu_b = 0.0 // Mu_b is 0 at T_c
		_, err := tempCrit.CritTempSolve(env, epsAbs, epsRel)
		if err != nil {
			return nil, err
		}
		omegaFit, err := tempCrit.OmegaFit(env, tempCrit.OmegaPlus)
		if err != nil {
			return nil, err
		}
		env.A, env.B = omegaFit[0], omegaFit[2]
		env.PairCoeffsReady = true
		// uncache env
		env.D1, env.Mu_h, env.Mu_b, env.Beta = D1, Mu_h, Mu_b, Beta
	}
	// our guess for beta should be a bit above Beta_p
	pairSystem, pairStart := tempPair.PairTempSystem(env)
	_, err := solve.MultiDim(pairSystem, pairStart, epsAbs, epsRel)
	if err != nil {
		return nil, err
	}
	env.Beta += 0.1
	// solve fluc temp system for reasonable values of Mu_h and D1 first
	system, start := FlucTempD1MuSystem(env)
	_, err = solve.MultiDim(system, start, epsAbs, epsRel)
	if err != nil {
		return nil, err
	}
	// solve the full fluc temp system
	system, start = FlucTempFullSystem(env)
	solution, err := solve.MultiDim(system, start, epsAbs, epsRel)
	if err != nil {
		return nil, err
	}
	return solution, nil
}