Exemplo n.º 1
0
func initReflect(i *interpreter) {
	i.reflectPackage = &ssa.Package{
		Prog:    i.prog,
		Pkg:     reflectTypesPackage,
		Members: make(map[string]ssa.Member),
	}

	// Clobber the type-checker's notion of reflect.Value's
	// underlying type so that it more closely matches the fake one
	// (at least in the number of fields---we lie about the type of
	// the rtype field).
	//
	// We must ensure that calls to (ssa.Value).Type() return the
	// fake type so that correct "shape" is used when allocating
	// variables, making zero values, loading, and storing.
	//
	// TODO(adonovan): obviously this is a hack.  We need a cleaner
	// way to fake the reflect package (almost---DeepEqual is fine).
	// One approach would be not to even load its source code, but
	// provide fake source files.  This would guarantee that no bad
	// information leaks into other packages.
	if r := i.prog.ImportedPackage("reflect"); r != nil {
		rV := r.Pkg.Scope().Lookup("Value").Type().(*types.Named)

		// delete bodies of the old methods
		mset := i.prog.MethodSets.MethodSet(rV)
		for j := 0; j < mset.Len(); j++ {
			i.prog.MethodValue(mset.At(j)).Blocks = nil
		}

		tEface := types.NewInterface(nil, nil).Complete()
		rV.SetUnderlying(types.NewStruct([]*types.Var{
			types.NewField(token.NoPos, r.Pkg, "t", tEface, false), // a lie
			types.NewField(token.NoPos, r.Pkg, "v", tEface, false),
		}, nil))
	}

	i.rtypeMethods = methodSet{
		"Bits":      newMethod(i.reflectPackage, rtypeType, "Bits"),
		"Elem":      newMethod(i.reflectPackage, rtypeType, "Elem"),
		"Field":     newMethod(i.reflectPackage, rtypeType, "Field"),
		"In":        newMethod(i.reflectPackage, rtypeType, "In"),
		"Kind":      newMethod(i.reflectPackage, rtypeType, "Kind"),
		"NumField":  newMethod(i.reflectPackage, rtypeType, "NumField"),
		"NumIn":     newMethod(i.reflectPackage, rtypeType, "NumIn"),
		"NumMethod": newMethod(i.reflectPackage, rtypeType, "NumMethod"),
		"NumOut":    newMethod(i.reflectPackage, rtypeType, "NumOut"),
		"Out":       newMethod(i.reflectPackage, rtypeType, "Out"),
		"Size":      newMethod(i.reflectPackage, rtypeType, "Size"),
		"String":    newMethod(i.reflectPackage, rtypeType, "String"),
	}
	i.errorMethods = methodSet{
		"Error": newMethod(i.reflectPackage, errorType, "Error"),
	}
}
Exemplo n.º 2
0
// InterfaceType = "interface" "{" [ MethodList ] "}" .
// MethodList    = Method { ";" Method } .
// Method        = Name Signature .
//
// The methods of embedded interfaces are always "inlined"
// by the compiler and thus embedded interfaces are never
// visible in the export data.
//
func (p *parser) parseInterfaceType(parent *types.Package) types.Type {
	var methods []*types.Func

	p.expectKeyword("interface")
	p.expect('{')
	for i := 0; p.tok != '}' && p.tok != scanner.EOF; i++ {
		if i > 0 {
			p.expect(';')
		}
		pkg, name := p.parseName(parent, true)
		sig := p.parseSignature(nil)
		methods = append(methods, types.NewFunc(token.NoPos, pkg, name, sig))
	}
	p.expect('}')

	// Complete requires the type's embedded interfaces to be fully defined,
	// but we do not define any
	return types.NewInterface(methods, nil).Complete()
}
Exemplo n.º 3
0
// InterfaceType = "interface" "{" { ("?" Type | Func) ";" } "}" .
func (p *parser) parseInterfaceType(pkg *types.Package) types.Type {
	p.expectKeyword("interface")

	var methods []*types.Func
	var typs []*types.Named

	p.expect('{')
	for p.tok != '}' && p.tok != scanner.EOF {
		if p.tok == '?' {
			p.next()
			typs = append(typs, p.parseType(pkg).(*types.Named))
		} else {
			method := p.parseFunc(pkg)
			methods = append(methods, method)
		}
		p.expect(';')
	}
	p.expect('}')

	return types.NewInterface(methods, typs)
}
Exemplo n.º 4
0
// parent is the package which declared the type; parent == nil means
// the package currently imported. The parent package is needed for
// exported struct fields and interface methods which don't contain
// explicit package information in the export data.
func (p *importer) typ(parent *types.Package) types.Type {
	// if the type was seen before, i is its index (>= 0)
	i := p.tagOrIndex()
	if i >= 0 {
		return p.typList[i]
	}

	// otherwise, i is the type tag (< 0)
	switch i {
	case namedTag:
		// read type object
		name := p.string()
		parent = p.pkg()
		scope := parent.Scope()
		obj := scope.Lookup(name)

		// if the object doesn't exist yet, create and insert it
		if obj == nil {
			obj = types.NewTypeName(token.NoPos, parent, name, nil)
			scope.Insert(obj)
		}

		if _, ok := obj.(*types.TypeName); !ok {
			panic(fmt.Sprintf("pkg = %s, name = %s => %s", parent, name, obj))
		}

		// associate new named type with obj if it doesn't exist yet
		t0 := types.NewNamed(obj.(*types.TypeName), nil, nil)

		// but record the existing type, if any
		t := obj.Type().(*types.Named)
		p.record(t)

		// read underlying type
		t0.SetUnderlying(p.typ(parent))

		// interfaces don't have associated methods
		if _, ok := t0.Underlying().(*types.Interface); ok {
			return t
		}

		// read associated methods
		for i := p.int(); i > 0; i-- {
			name := p.string()
			recv, _ := p.paramList() // TODO(gri) do we need a full param list for the receiver?
			params, isddd := p.paramList()
			result, _ := p.paramList()
			p.int() // read and discard index of inlined function body
			sig := types.NewSignature(recv.At(0), params, result, isddd)
			t0.AddMethod(types.NewFunc(token.NoPos, parent, name, sig))
		}

		return t

	case arrayTag:
		t := new(types.Array)
		p.record(t)

		n := p.int64()
		*t = *types.NewArray(p.typ(parent), n)
		return t

	case sliceTag:
		t := new(types.Slice)
		p.record(t)

		*t = *types.NewSlice(p.typ(parent))
		return t

	case dddTag:
		t := new(dddSlice)
		p.record(t)

		t.elem = p.typ(parent)
		return t

	case structTag:
		t := new(types.Struct)
		p.record(t)

		n := p.int()
		fields := make([]*types.Var, n)
		tags := make([]string, n)
		for i := range fields {
			fields[i] = p.field(parent)
			tags[i] = p.string()
		}
		*t = *types.NewStruct(fields, tags)
		return t

	case pointerTag:
		t := new(types.Pointer)
		p.record(t)

		*t = *types.NewPointer(p.typ(parent))
		return t

	case signatureTag:
		t := new(types.Signature)
		p.record(t)

		params, isddd := p.paramList()
		result, _ := p.paramList()
		*t = *types.NewSignature(nil, params, result, isddd)
		return t

	case interfaceTag:
		// Create a dummy entry in the type list. This is safe because we
		// cannot expect the interface type to appear in a cycle, as any
		// such cycle must contain a named type which would have been
		// first defined earlier.
		n := len(p.typList)
		p.record(nil)

		// no embedded interfaces with gc compiler
		if p.int() != 0 {
			panic("unexpected embedded interface")
		}

		// read methods
		methods := make([]*types.Func, p.int())
		for i := range methods {
			pkg, name := p.fieldName(parent)
			params, isddd := p.paramList()
			result, _ := p.paramList()
			sig := types.NewSignature(nil, params, result, isddd)
			methods[i] = types.NewFunc(token.NoPos, pkg, name, sig)
		}

		t := types.NewInterface(methods, nil)
		p.typList[n] = t
		return t

	case mapTag:
		t := new(types.Map)
		p.record(t)

		key := p.typ(parent)
		val := p.typ(parent)
		*t = *types.NewMap(key, val)
		return t

	case chanTag:
		t := new(types.Chan)
		p.record(t)

		var dir types.ChanDir
		// tag values must match the constants in cmd/compile/internal/gc/go.go
		switch d := p.int(); d {
		case 1 /* Crecv */ :
			dir = types.RecvOnly
		case 2 /* Csend */ :
			dir = types.SendOnly
		case 3 /* Cboth */ :
			dir = types.SendRecv
		default:
			panic(fmt.Sprintf("unexpected channel dir %d", d))
		}
		val := p.typ(parent)
		*t = *types.NewChan(dir, val)
		return t

	default:
		panic(fmt.Sprintf("unexpected type tag %d", i))
	}
}
Exemplo n.º 5
0
// TODO(adonovan): move the constraint definitions and the store() etc
// functions which add them (and are also used by the solver) into a
// new file, constraints.go.

import (
	"fmt"
	"go/token"
	"go/types"

	"golang.org/x/tools/go/callgraph"
	"golang.org/x/tools/go/ssa"
)

var (
	tEface     = types.NewInterface(nil, nil).Complete()
	tInvalid   = types.Typ[types.Invalid]
	tUnsafePtr = types.Typ[types.UnsafePointer]
)

// ---------- Node creation ----------

// nextNode returns the index of the next unused node.
func (a *analysis) nextNode() nodeid {
	return nodeid(len(a.nodes))
}

// addNodes creates nodes for all scalar elements in type typ, and
// returns the id of the first one, or zero if the type was
// analytically uninteresting.
//
Exemplo n.º 6
0
func (c *funcContext) translateBuiltin(name string, sig *types.Signature, args []ast.Expr, ellipsis bool) *expression {
	switch name {
	case "new":
		t := sig.Results().At(0).Type().(*types.Pointer)
		if c.p.Pkg.Path() == "syscall" && types.Identical(t.Elem().Underlying(), types.Typ[types.Uintptr]) {
			return c.formatExpr("new Uint8Array(8)")
		}
		switch t.Elem().Underlying().(type) {
		case *types.Struct, *types.Array:
			return c.formatExpr("%e", c.zeroValue(t.Elem()))
		default:
			return c.formatExpr("$newDataPointer(%e, %s)", c.zeroValue(t.Elem()), c.typeName(t))
		}
	case "make":
		switch argType := c.p.TypeOf(args[0]).Underlying().(type) {
		case *types.Slice:
			t := c.typeName(c.p.TypeOf(args[0]))
			if len(args) == 3 {
				return c.formatExpr("$makeSlice(%s, %f, %f)", t, args[1], args[2])
			}
			return c.formatExpr("$makeSlice(%s, %f)", t, args[1])
		case *types.Map:
			if len(args) == 2 && c.p.Types[args[1]].Value == nil {
				return c.formatExpr(`((%1f < 0 || %1f > 2147483647) ? $throwRuntimeError("makemap: size out of range") : {})`, args[1])
			}
			return c.formatExpr("{}")
		case *types.Chan:
			length := "0"
			if len(args) == 2 {
				length = c.formatExpr("%f", args[1]).String()
			}
			return c.formatExpr("new $Chan(%s, %s)", c.typeName(c.p.TypeOf(args[0]).Underlying().(*types.Chan).Elem()), length)
		default:
			panic(fmt.Sprintf("Unhandled make type: %T\n", argType))
		}
	case "len":
		switch argType := c.p.TypeOf(args[0]).Underlying().(type) {
		case *types.Basic:
			return c.formatExpr("%e.length", args[0])
		case *types.Slice:
			return c.formatExpr("%e.$length", args[0])
		case *types.Pointer:
			return c.formatExpr("(%e, %d)", args[0], argType.Elem().(*types.Array).Len())
		case *types.Map:
			return c.formatExpr("$keys(%e).length", args[0])
		case *types.Chan:
			return c.formatExpr("%e.$buffer.length", args[0])
		// length of array is constant
		default:
			panic(fmt.Sprintf("Unhandled len type: %T\n", argType))
		}
	case "cap":
		switch argType := c.p.TypeOf(args[0]).Underlying().(type) {
		case *types.Slice, *types.Chan:
			return c.formatExpr("%e.$capacity", args[0])
		case *types.Pointer:
			return c.formatExpr("(%e, %d)", args[0], argType.Elem().(*types.Array).Len())
		// capacity of array is constant
		default:
			panic(fmt.Sprintf("Unhandled cap type: %T\n", argType))
		}
	case "panic":
		return c.formatExpr("$panic(%s)", c.translateImplicitConversion(args[0], types.NewInterface(nil, nil)))
	case "append":
		if ellipsis || len(args) == 1 {
			argStr := c.translateArgs(sig, args, ellipsis, false)
			return c.formatExpr("$appendSlice(%s, %s)", argStr[0], argStr[1])
		}
		sliceType := sig.Results().At(0).Type().Underlying().(*types.Slice)
		return c.formatExpr("$append(%e, %s)", args[0], strings.Join(c.translateExprSlice(args[1:], sliceType.Elem()), ", "))
	case "delete":
		keyType := c.p.TypeOf(args[0]).Underlying().(*types.Map).Key()
		return c.formatExpr(`delete %e[%s.keyFor(%s)]`, args[0], c.typeName(keyType), c.translateImplicitConversion(args[1], keyType))
	case "copy":
		if basic, isBasic := c.p.TypeOf(args[1]).Underlying().(*types.Basic); isBasic && isString(basic) {
			return c.formatExpr("$copyString(%e, %e)", args[0], args[1])
		}
		return c.formatExpr("$copySlice(%e, %e)", args[0], args[1])
	case "print", "println":
		return c.formatExpr("console.log(%s)", strings.Join(c.translateExprSlice(args, nil), ", "))
	case "complex":
		argStr := c.translateArgs(sig, args, ellipsis, false)
		return c.formatExpr("new %s(%s, %s)", c.typeName(sig.Results().At(0).Type()), argStr[0], argStr[1])
	case "real":
		return c.formatExpr("%e.$real", args[0])
	case "imag":
		return c.formatExpr("%e.$imag", args[0])
	case "recover":
		return c.formatExpr("$recover()")
	case "close":
		return c.formatExpr(`$close(%e)`, args[0])
	default:
		panic(fmt.Sprintf("Unhandled builtin: %s\n", name))
	}
}
Exemplo n.º 7
0
func (c *funcContext) translateExpr(expr ast.Expr) *expression {
	exprType := c.p.TypeOf(expr)
	if value := c.p.Types[expr].Value; value != nil {
		basic := exprType.Underlying().(*types.Basic)
		switch {
		case isBoolean(basic):
			return c.formatExpr("%s", strconv.FormatBool(constant.BoolVal(value)))
		case isInteger(basic):
			if is64Bit(basic) {
				if basic.Kind() == types.Int64 {
					d, ok := constant.Int64Val(constant.ToInt(value))
					if !ok {
						panic("could not get exact uint")
					}
					return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatInt(d>>32, 10), strconv.FormatUint(uint64(d)&(1<<32-1), 10))
				}
				d, ok := constant.Uint64Val(constant.ToInt(value))
				if !ok {
					panic("could not get exact uint")
				}
				return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatUint(d>>32, 10), strconv.FormatUint(d&(1<<32-1), 10))
			}
			d, ok := constant.Int64Val(constant.ToInt(value))
			if !ok {
				panic("could not get exact int")
			}
			return c.formatExpr("%s", strconv.FormatInt(d, 10))
		case isFloat(basic):
			f, _ := constant.Float64Val(value)
			return c.formatExpr("%s", strconv.FormatFloat(f, 'g', -1, 64))
		case isComplex(basic):
			r, _ := constant.Float64Val(constant.Real(value))
			i, _ := constant.Float64Val(constant.Imag(value))
			if basic.Kind() == types.UntypedComplex {
				exprType = types.Typ[types.Complex128]
			}
			return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatFloat(r, 'g', -1, 64), strconv.FormatFloat(i, 'g', -1, 64))
		case isString(basic):
			return c.formatExpr("%s", encodeString(constant.StringVal(value)))
		default:
			panic("Unhandled constant type: " + basic.String())
		}
	}

	var obj types.Object
	switch e := expr.(type) {
	case *ast.SelectorExpr:
		obj = c.p.Uses[e.Sel]
	case *ast.Ident:
		obj = c.p.Defs[e]
		if obj == nil {
			obj = c.p.Uses[e]
		}
	}

	if obj != nil && typesutil.IsJsPackage(obj.Pkg()) {
		switch obj.Name() {
		case "Global":
			return c.formatExpr("$global")
		case "Module":
			return c.formatExpr("$module")
		case "Undefined":
			return c.formatExpr("undefined")
		}
	}

	switch e := expr.(type) {
	case *ast.CompositeLit:
		if ptrType, isPointer := exprType.(*types.Pointer); isPointer {
			exprType = ptrType.Elem()
		}

		collectIndexedElements := func(elementType types.Type) []string {
			var elements []string
			i := 0
			zero := c.translateExpr(c.zeroValue(elementType)).String()
			for _, element := range e.Elts {
				if kve, isKve := element.(*ast.KeyValueExpr); isKve {
					key, ok := constant.Int64Val(constant.ToInt(c.p.Types[kve.Key].Value))
					if !ok {
						panic("could not get exact int")
					}
					i = int(key)
					element = kve.Value
				}
				for len(elements) <= i {
					elements = append(elements, zero)
				}
				elements[i] = c.translateImplicitConversionWithCloning(element, elementType).String()
				i++
			}
			return elements
		}

		switch t := exprType.Underlying().(type) {
		case *types.Array:
			elements := collectIndexedElements(t.Elem())
			if len(elements) == 0 {
				return c.formatExpr("%s.zero()", c.typeName(t))
			}
			zero := c.translateExpr(c.zeroValue(t.Elem())).String()
			for len(elements) < int(t.Len()) {
				elements = append(elements, zero)
			}
			return c.formatExpr(`$toNativeArray(%s, [%s])`, typeKind(t.Elem()), strings.Join(elements, ", "))
		case *types.Slice:
			return c.formatExpr("new %s([%s])", c.typeName(exprType), strings.Join(collectIndexedElements(t.Elem()), ", "))
		case *types.Map:
			entries := make([]string, len(e.Elts))
			for i, element := range e.Elts {
				kve := element.(*ast.KeyValueExpr)
				entries[i] = fmt.Sprintf("{ k: %s, v: %s }", c.translateImplicitConversionWithCloning(kve.Key, t.Key()), c.translateImplicitConversionWithCloning(kve.Value, t.Elem()))
			}
			return c.formatExpr("$makeMap(%s.keyFor, [%s])", c.typeName(t.Key()), strings.Join(entries, ", "))
		case *types.Struct:
			elements := make([]string, t.NumFields())
			isKeyValue := true
			if len(e.Elts) != 0 {
				_, isKeyValue = e.Elts[0].(*ast.KeyValueExpr)
			}
			if !isKeyValue {
				for i, element := range e.Elts {
					elements[i] = c.translateImplicitConversionWithCloning(element, t.Field(i).Type()).String()
				}
			}
			if isKeyValue {
				for i := range elements {
					elements[i] = c.translateExpr(c.zeroValue(t.Field(i).Type())).String()
				}
				for _, element := range e.Elts {
					kve := element.(*ast.KeyValueExpr)
					for j := range elements {
						if kve.Key.(*ast.Ident).Name == t.Field(j).Name() {
							elements[j] = c.translateImplicitConversionWithCloning(kve.Value, t.Field(j).Type()).String()
							break
						}
					}
				}
			}
			return c.formatExpr("new %s.ptr(%s)", c.typeName(exprType), strings.Join(elements, ", "))
		default:
			panic(fmt.Sprintf("Unhandled CompositeLit type: %T\n", t))
		}

	case *ast.FuncLit:
		_, fun := translateFunction(e.Type, nil, e.Body, c, exprType.(*types.Signature), c.p.FuncLitInfos[e], "")
		if len(c.p.escapingVars) != 0 {
			names := make([]string, 0, len(c.p.escapingVars))
			for obj := range c.p.escapingVars {
				names = append(names, c.p.objectNames[obj])
			}
			sort.Strings(names)
			list := strings.Join(names, ", ")
			return c.formatExpr("(function(%s) { return %s; })(%s)", list, fun, list)
		}
		return c.formatExpr("(%s)", fun)

	case *ast.UnaryExpr:
		t := c.p.TypeOf(e.X)
		switch e.Op {
		case token.AND:
			if typesutil.IsJsObject(exprType) {
				return c.formatExpr("%e.object", e.X)
			}

			switch t.Underlying().(type) {
			case *types.Struct, *types.Array:
				return c.translateExpr(e.X)
			}

			switch x := astutil.RemoveParens(e.X).(type) {
			case *ast.CompositeLit:
				return c.formatExpr("$newDataPointer(%e, %s)", x, c.typeName(c.p.TypeOf(e)))
			case *ast.Ident:
				obj := c.p.Uses[x].(*types.Var)
				if c.p.escapingVars[obj] {
					return c.formatExpr("(%1s.$ptr || (%1s.$ptr = new %2s(function() { return this.$target[0]; }, function($v) { this.$target[0] = $v; }, %1s)))", c.p.objectNames[obj], c.typeName(exprType))
				}
				return c.formatExpr(`(%1s || (%1s = new %2s(function() { return %3s; }, function($v) { %4s })))`, c.varPtrName(obj), c.typeName(exprType), c.objectName(obj), c.translateAssign(x, c.newIdent("$v", exprType), false))
			case *ast.SelectorExpr:
				sel, ok := c.p.SelectionOf(x)
				if !ok {
					// qualified identifier
					obj := c.p.Uses[x.Sel].(*types.Var)
					return c.formatExpr(`(%1s || (%1s = new %2s(function() { return %3s; }, function($v) { %4s })))`, c.varPtrName(obj), c.typeName(exprType), c.objectName(obj), c.translateAssign(x, c.newIdent("$v", exprType), false))
				}
				newSel := &ast.SelectorExpr{X: c.newIdent("this.$target", c.p.TypeOf(x.X)), Sel: x.Sel}
				c.setType(newSel, exprType)
				c.p.additionalSelections[newSel] = sel
				return c.formatExpr("(%1e.$ptr_%2s || (%1e.$ptr_%2s = new %3s(function() { return %4e; }, function($v) { %5s }, %1e)))", x.X, x.Sel.Name, c.typeName(exprType), newSel, c.translateAssign(newSel, c.newIdent("$v", exprType), false))
			case *ast.IndexExpr:
				if _, ok := c.p.TypeOf(x.X).Underlying().(*types.Slice); ok {
					return c.formatExpr("$indexPtr(%1e.$array, %1e.$offset + %2e, %3s)", x.X, x.Index, c.typeName(exprType))
				}
				return c.formatExpr("$indexPtr(%e, %e, %s)", x.X, x.Index, c.typeName(exprType))
			case *ast.StarExpr:
				return c.translateExpr(x.X)
			default:
				panic(fmt.Sprintf("Unhandled: %T\n", x))
			}

		case token.ARROW:
			call := &ast.CallExpr{
				Fun:  c.newIdent("$recv", types.NewSignature(nil, types.NewTuple(types.NewVar(0, nil, "", t)), types.NewTuple(types.NewVar(0, nil, "", exprType), types.NewVar(0, nil, "", types.Typ[types.Bool])), false)),
				Args: []ast.Expr{e.X},
			}
			c.Blocking[call] = true
			if _, isTuple := exprType.(*types.Tuple); isTuple {
				return c.formatExpr("%e", call)
			}
			return c.formatExpr("%e[0]", call)
		}

		basic := t.Underlying().(*types.Basic)
		switch e.Op {
		case token.ADD:
			return c.translateExpr(e.X)
		case token.SUB:
			switch {
			case is64Bit(basic):
				return c.formatExpr("new %1s(-%2h, -%2l)", c.typeName(t), e.X)
			case isComplex(basic):
				return c.formatExpr("new %1s(-%2r, -%2i)", c.typeName(t), e.X)
			case isUnsigned(basic):
				return c.fixNumber(c.formatExpr("-%e", e.X), basic)
			default:
				return c.formatExpr("-%e", e.X)
			}
		case token.XOR:
			if is64Bit(basic) {
				return c.formatExpr("new %1s(~%2h, ~%2l >>> 0)", c.typeName(t), e.X)
			}
			return c.fixNumber(c.formatExpr("~%e", e.X), basic)
		case token.NOT:
			return c.formatExpr("!%e", e.X)
		default:
			panic(e.Op)
		}

	case *ast.BinaryExpr:
		if e.Op == token.NEQ {
			return c.formatExpr("!(%s)", c.translateExpr(&ast.BinaryExpr{
				X:  e.X,
				Op: token.EQL,
				Y:  e.Y,
			}))
		}

		t := c.p.TypeOf(e.X)
		t2 := c.p.TypeOf(e.Y)
		_, isInterface := t2.Underlying().(*types.Interface)
		if isInterface || types.Identical(t, types.Typ[types.UntypedNil]) {
			t = t2
		}

		if basic, isBasic := t.Underlying().(*types.Basic); isBasic && isNumeric(basic) {
			if is64Bit(basic) {
				switch e.Op {
				case token.MUL:
					return c.formatExpr("$mul64(%e, %e)", e.X, e.Y)
				case token.QUO:
					return c.formatExpr("$div64(%e, %e, false)", e.X, e.Y)
				case token.REM:
					return c.formatExpr("$div64(%e, %e, true)", e.X, e.Y)
				case token.SHL:
					return c.formatExpr("$shiftLeft64(%e, %f)", e.X, e.Y)
				case token.SHR:
					return c.formatExpr("$shiftRight%s(%e, %f)", toJavaScriptType(basic), e.X, e.Y)
				case token.EQL:
					return c.formatExpr("(%1h === %2h && %1l === %2l)", e.X, e.Y)
				case token.LSS:
					return c.formatExpr("(%1h < %2h || (%1h === %2h && %1l < %2l))", e.X, e.Y)
				case token.LEQ:
					return c.formatExpr("(%1h < %2h || (%1h === %2h && %1l <= %2l))", e.X, e.Y)
				case token.GTR:
					return c.formatExpr("(%1h > %2h || (%1h === %2h && %1l > %2l))", e.X, e.Y)
				case token.GEQ:
					return c.formatExpr("(%1h > %2h || (%1h === %2h && %1l >= %2l))", e.X, e.Y)
				case token.ADD, token.SUB:
					return c.formatExpr("new %3s(%1h %4t %2h, %1l %4t %2l)", e.X, e.Y, c.typeName(t), e.Op)
				case token.AND, token.OR, token.XOR:
					return c.formatExpr("new %3s(%1h %4t %2h, (%1l %4t %2l) >>> 0)", e.X, e.Y, c.typeName(t), e.Op)
				case token.AND_NOT:
					return c.formatExpr("new %3s(%1h & ~%2h, (%1l & ~%2l) >>> 0)", e.X, e.Y, c.typeName(t))
				default:
					panic(e.Op)
				}
			}

			if isComplex(basic) {
				switch e.Op {
				case token.EQL:
					return c.formatExpr("(%1r === %2r && %1i === %2i)", e.X, e.Y)
				case token.ADD, token.SUB:
					return c.formatExpr("new %3s(%1r %4t %2r, %1i %4t %2i)", e.X, e.Y, c.typeName(t), e.Op)
				case token.MUL:
					return c.formatExpr("new %3s(%1r * %2r - %1i * %2i, %1r * %2i + %1i * %2r)", e.X, e.Y, c.typeName(t))
				case token.QUO:
					return c.formatExpr("$divComplex(%e, %e)", e.X, e.Y)
				default:
					panic(e.Op)
				}
			}

			switch e.Op {
			case token.EQL:
				return c.formatParenExpr("%e === %e", e.X, e.Y)
			case token.LSS, token.LEQ, token.GTR, token.GEQ:
				return c.formatExpr("%e %t %e", e.X, e.Op, e.Y)
			case token.ADD, token.SUB:
				return c.fixNumber(c.formatExpr("%e %t %e", e.X, e.Op, e.Y), basic)
			case token.MUL:
				switch basic.Kind() {
				case types.Int32, types.Int:
					return c.formatParenExpr("$imul(%e, %e)", e.X, e.Y)
				case types.Uint32, types.Uintptr:
					return c.formatParenExpr("$imul(%e, %e) >>> 0", e.X, e.Y)
				}
				return c.fixNumber(c.formatExpr("%e * %e", e.X, e.Y), basic)
			case token.QUO:
				if isInteger(basic) {
					// cut off decimals
					shift := ">>"
					if isUnsigned(basic) {
						shift = ">>>"
					}
					return c.formatExpr(`(%1s = %2e / %3e, (%1s === %1s && %1s !== 1/0 && %1s !== -1/0) ? %1s %4s 0 : $throwRuntimeError("integer divide by zero"))`, c.newVariable("_q"), e.X, e.Y, shift)
				}
				if basic.Kind() == types.Float32 {
					return c.fixNumber(c.formatExpr("%e / %e", e.X, e.Y), basic)
				}
				return c.formatExpr("%e / %e", e.X, e.Y)
			case token.REM:
				return c.formatExpr(`(%1s = %2e %% %3e, %1s === %1s ? %1s : $throwRuntimeError("integer divide by zero"))`, c.newVariable("_r"), e.X, e.Y)
			case token.SHL, token.SHR:
				op := e.Op.String()
				if e.Op == token.SHR && isUnsigned(basic) {
					op = ">>>"
				}
				if v := c.p.Types[e.Y].Value; v != nil {
					i, _ := constant.Uint64Val(constant.ToInt(v))
					if i >= 32 {
						return c.formatExpr("0")
					}
					return c.fixNumber(c.formatExpr("%e %s %s", e.X, op, strconv.FormatUint(i, 10)), basic)
				}
				if e.Op == token.SHR && !isUnsigned(basic) {
					return c.fixNumber(c.formatParenExpr("%e >> $min(%f, 31)", e.X, e.Y), basic)
				}
				y := c.newVariable("y")
				return c.fixNumber(c.formatExpr("(%s = %f, %s < 32 ? (%e %s %s) : 0)", y, e.Y, y, e.X, op, y), basic)
			case token.AND, token.OR:
				if isUnsigned(basic) {
					return c.formatParenExpr("(%e %t %e) >>> 0", e.X, e.Op, e.Y)
				}
				return c.formatParenExpr("%e %t %e", e.X, e.Op, e.Y)
			case token.AND_NOT:
				return c.fixNumber(c.formatParenExpr("%e & ~%e", e.X, e.Y), basic)
			case token.XOR:
				return c.fixNumber(c.formatParenExpr("%e ^ %e", e.X, e.Y), basic)
			default:
				panic(e.Op)
			}
		}

		switch e.Op {
		case token.ADD, token.LSS, token.LEQ, token.GTR, token.GEQ:
			return c.formatExpr("%e %t %e", e.X, e.Op, e.Y)
		case token.LAND:
			if c.Blocking[e.Y] {
				skipCase := c.caseCounter
				c.caseCounter++
				resultVar := c.newVariable("_v")
				c.Printf("if (!(%s)) { %s = false; $s = %d; continue s; }", c.translateExpr(e.X), resultVar, skipCase)
				c.Printf("%s = %s; case %d:", resultVar, c.translateExpr(e.Y), skipCase)
				return c.formatExpr("%s", resultVar)
			}
			return c.formatExpr("%e && %e", e.X, e.Y)
		case token.LOR:
			if c.Blocking[e.Y] {
				skipCase := c.caseCounter
				c.caseCounter++
				resultVar := c.newVariable("_v")
				c.Printf("if (%s) { %s = true; $s = %d; continue s; }", c.translateExpr(e.X), resultVar, skipCase)
				c.Printf("%s = %s; case %d:", resultVar, c.translateExpr(e.Y), skipCase)
				return c.formatExpr("%s", resultVar)
			}
			return c.formatExpr("%e || %e", e.X, e.Y)
		case token.EQL:
			switch u := t.Underlying().(type) {
			case *types.Array, *types.Struct:
				return c.formatExpr("$equal(%e, %e, %s)", e.X, e.Y, c.typeName(t))
			case *types.Interface:
				return c.formatExpr("$interfaceIsEqual(%s, %s)", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t))
			case *types.Pointer:
				if _, ok := u.Elem().Underlying().(*types.Array); ok {
					return c.formatExpr("$equal(%s, %s, %s)", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t), c.typeName(u.Elem()))
				}
			case *types.Basic:
				if isBoolean(u) {
					if b, ok := analysis.BoolValue(e.X, c.p.Info.Info); ok && b {
						return c.translateExpr(e.Y)
					}
					if b, ok := analysis.BoolValue(e.Y, c.p.Info.Info); ok && b {
						return c.translateExpr(e.X)
					}
				}
			}
			return c.formatExpr("%s === %s", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t))
		default:
			panic(e.Op)
		}

	case *ast.ParenExpr:
		return c.formatParenExpr("%e", e.X)

	case *ast.IndexExpr:
		switch t := c.p.TypeOf(e.X).Underlying().(type) {
		case *types.Array, *types.Pointer:
			pattern := rangeCheck("%1e[%2f]", c.p.Types[e.Index].Value != nil, true)
			if _, ok := t.(*types.Pointer); ok { // check pointer for nix (attribute getter causes a panic)
				pattern = `(%1e.nilCheck, ` + pattern + `)`
			}
			return c.formatExpr(pattern, e.X, e.Index)
		case *types.Slice:
			return c.formatExpr(rangeCheck("%1e.$array[%1e.$offset + %2f]", c.p.Types[e.Index].Value != nil, false), e.X, e.Index)
		case *types.Map:
			if typesutil.IsJsObject(c.p.TypeOf(e.Index)) {
				c.p.errList = append(c.p.errList, types.Error{Fset: c.p.fileSet, Pos: e.Index.Pos(), Msg: "cannot use js.Object as map key"})
			}
			key := fmt.Sprintf("%s.keyFor(%s)", c.typeName(t.Key()), c.translateImplicitConversion(e.Index, t.Key()))
			if _, isTuple := exprType.(*types.Tuple); isTuple {
				return c.formatExpr(`(%1s = %2e[%3s], %1s !== undefined ? [%1s.v, true] : [%4e, false])`, c.newVariable("_entry"), e.X, key, c.zeroValue(t.Elem()))
			}
			return c.formatExpr(`(%1s = %2e[%3s], %1s !== undefined ? %1s.v : %4e)`, c.newVariable("_entry"), e.X, key, c.zeroValue(t.Elem()))
		case *types.Basic:
			return c.formatExpr("%e.charCodeAt(%f)", e.X, e.Index)
		default:
			panic(fmt.Sprintf("Unhandled IndexExpr: %T\n", t))
		}

	case *ast.SliceExpr:
		if b, isBasic := c.p.TypeOf(e.X).Underlying().(*types.Basic); isBasic && isString(b) {
			switch {
			case e.Low == nil && e.High == nil:
				return c.translateExpr(e.X)
			case e.Low == nil:
				return c.formatExpr("%e.substring(0, %f)", e.X, e.High)
			case e.High == nil:
				return c.formatExpr("%e.substring(%f)", e.X, e.Low)
			default:
				return c.formatExpr("%e.substring(%f, %f)", e.X, e.Low, e.High)
			}
		}
		slice := c.translateConversionToSlice(e.X, exprType)
		switch {
		case e.Low == nil && e.High == nil:
			return c.formatExpr("%s", slice)
		case e.Low == nil:
			if e.Max != nil {
				return c.formatExpr("$subslice(%s, 0, %f, %f)", slice, e.High, e.Max)
			}
			return c.formatExpr("$subslice(%s, 0, %f)", slice, e.High)
		case e.High == nil:
			return c.formatExpr("$subslice(%s, %f)", slice, e.Low)
		default:
			if e.Max != nil {
				return c.formatExpr("$subslice(%s, %f, %f, %f)", slice, e.Low, e.High, e.Max)
			}
			return c.formatExpr("$subslice(%s, %f, %f)", slice, e.Low, e.High)
		}

	case *ast.SelectorExpr:
		sel, ok := c.p.SelectionOf(e)
		if !ok {
			// qualified identifier
			return c.formatExpr("%s", c.objectName(obj))
		}

		switch sel.Kind() {
		case types.FieldVal:
			fields, jsTag := c.translateSelection(sel, e.Pos())
			if jsTag != "" {
				if _, ok := sel.Type().(*types.Signature); ok {
					return c.formatExpr("$internalize(%1e.%2s.%3s, %4s, %1e.%2s)", e.X, strings.Join(fields, "."), jsTag, c.typeName(sel.Type()))
				}
				return c.internalize(c.formatExpr("%e.%s.%s", e.X, strings.Join(fields, "."), jsTag), sel.Type())
			}
			return c.formatExpr("%e.%s", e.X, strings.Join(fields, "."))
		case types.MethodVal:
			return c.formatExpr(`$methodVal(%s, "%s")`, c.makeReceiver(e), sel.Obj().(*types.Func).Name())
		case types.MethodExpr:
			if !sel.Obj().Exported() {
				c.p.dependencies[sel.Obj()] = true
			}
			if _, ok := sel.Recv().Underlying().(*types.Interface); ok {
				return c.formatExpr(`$ifaceMethodExpr("%s")`, sel.Obj().(*types.Func).Name())
			}
			return c.formatExpr(`$methodExpr(%s, "%s")`, c.typeName(sel.Recv()), sel.Obj().(*types.Func).Name())
		default:
			panic(fmt.Sprintf("unexpected sel.Kind(): %T", sel.Kind()))
		}

	case *ast.CallExpr:
		plainFun := astutil.RemoveParens(e.Fun)

		if astutil.IsTypeExpr(plainFun, c.p.Info.Info) {
			return c.formatExpr("%s", c.translateConversion(e.Args[0], c.p.TypeOf(plainFun)))
		}

		sig := c.p.TypeOf(plainFun).Underlying().(*types.Signature)

		switch f := plainFun.(type) {
		case *ast.Ident:
			obj := c.p.Uses[f]
			if o, ok := obj.(*types.Builtin); ok {
				return c.translateBuiltin(o.Name(), sig, e.Args, e.Ellipsis.IsValid())
			}
			if typesutil.IsJsPackage(obj.Pkg()) && obj.Name() == "InternalObject" {
				return c.translateExpr(e.Args[0])
			}
			return c.translateCall(e, sig, c.translateExpr(f))

		case *ast.SelectorExpr:
			sel, ok := c.p.SelectionOf(f)
			if !ok {
				// qualified identifier
				obj := c.p.Uses[f.Sel]
				if typesutil.IsJsPackage(obj.Pkg()) {
					switch obj.Name() {
					case "Debugger":
						return c.formatExpr("debugger")
					case "InternalObject":
						return c.translateExpr(e.Args[0])
					}
				}
				return c.translateCall(e, sig, c.translateExpr(f))
			}

			externalizeExpr := func(e ast.Expr) string {
				t := c.p.TypeOf(e)
				if types.Identical(t, types.Typ[types.UntypedNil]) {
					return "null"
				}
				return c.externalize(c.translateExpr(e).String(), t)
			}
			externalizeArgs := func(args []ast.Expr) string {
				s := make([]string, len(args))
				for i, arg := range args {
					s[i] = externalizeExpr(arg)
				}
				return strings.Join(s, ", ")
			}

			switch sel.Kind() {
			case types.MethodVal:
				recv := c.makeReceiver(f)
				declaredFuncRecv := sel.Obj().(*types.Func).Type().(*types.Signature).Recv().Type()
				if typesutil.IsJsObject(declaredFuncRecv) {
					globalRef := func(id string) string {
						if recv.String() == "$global" && id[0] == '$' && len(id) > 1 {
							return id
						}
						return recv.String() + "." + id
					}
					switch sel.Obj().Name() {
					case "Get":
						if id, ok := c.identifierConstant(e.Args[0]); ok {
							return c.formatExpr("%s", globalRef(id))
						}
						return c.formatExpr("%s[$externalize(%e, $String)]", recv, e.Args[0])
					case "Set":
						if id, ok := c.identifierConstant(e.Args[0]); ok {
							return c.formatExpr("%s = %s", globalRef(id), externalizeExpr(e.Args[1]))
						}
						return c.formatExpr("%s[$externalize(%e, $String)] = %s", recv, e.Args[0], externalizeExpr(e.Args[1]))
					case "Delete":
						return c.formatExpr("delete %s[$externalize(%e, $String)]", recv, e.Args[0])
					case "Length":
						return c.formatExpr("$parseInt(%s.length)", recv)
					case "Index":
						return c.formatExpr("%s[%e]", recv, e.Args[0])
					case "SetIndex":
						return c.formatExpr("%s[%e] = %s", recv, e.Args[0], externalizeExpr(e.Args[1]))
					case "Call":
						if id, ok := c.identifierConstant(e.Args[0]); ok {
							if e.Ellipsis.IsValid() {
								objVar := c.newVariable("obj")
								return c.formatExpr("(%s = %s, %s.%s.apply(%s, %s))", objVar, recv, objVar, id, objVar, externalizeExpr(e.Args[1]))
							}
							return c.formatExpr("%s(%s)", globalRef(id), externalizeArgs(e.Args[1:]))
						}
						if e.Ellipsis.IsValid() {
							objVar := c.newVariable("obj")
							return c.formatExpr("(%s = %s, %s[$externalize(%e, $String)].apply(%s, %s))", objVar, recv, objVar, e.Args[0], objVar, externalizeExpr(e.Args[1]))
						}
						return c.formatExpr("%s[$externalize(%e, $String)](%s)", recv, e.Args[0], externalizeArgs(e.Args[1:]))
					case "Invoke":
						if e.Ellipsis.IsValid() {
							return c.formatExpr("%s.apply(undefined, %s)", recv, externalizeExpr(e.Args[0]))
						}
						return c.formatExpr("%s(%s)", recv, externalizeArgs(e.Args))
					case "New":
						if e.Ellipsis.IsValid() {
							return c.formatExpr("new ($global.Function.prototype.bind.apply(%s, [undefined].concat(%s)))", recv, externalizeExpr(e.Args[0]))
						}
						return c.formatExpr("new (%s)(%s)", recv, externalizeArgs(e.Args))
					case "Bool":
						return c.internalize(recv, types.Typ[types.Bool])
					case "String":
						return c.internalize(recv, types.Typ[types.String])
					case "Int":
						return c.internalize(recv, types.Typ[types.Int])
					case "Int64":
						return c.internalize(recv, types.Typ[types.Int64])
					case "Uint64":
						return c.internalize(recv, types.Typ[types.Uint64])
					case "Float":
						return c.internalize(recv, types.Typ[types.Float64])
					case "Interface":
						return c.internalize(recv, types.NewInterface(nil, nil))
					case "Unsafe":
						return recv
					default:
						panic("Invalid js package object: " + sel.Obj().Name())
					}
				}

				methodName := sel.Obj().Name()
				if reservedKeywords[methodName] {
					methodName += "$"
				}
				return c.translateCall(e, sig, c.formatExpr("%s.%s", recv, methodName))

			case types.FieldVal:
				fields, jsTag := c.translateSelection(sel, f.Pos())
				if jsTag != "" {
					call := c.formatExpr("%e.%s.%s(%s)", f.X, strings.Join(fields, "."), jsTag, externalizeArgs(e.Args))
					switch sig.Results().Len() {
					case 0:
						return call
					case 1:
						return c.internalize(call, sig.Results().At(0).Type())
					default:
						c.p.errList = append(c.p.errList, types.Error{Fset: c.p.fileSet, Pos: f.Pos(), Msg: "field with js tag can not have func type with multiple results"})
					}
				}
				return c.translateCall(e, sig, c.formatExpr("%e.%s", f.X, strings.Join(fields, ".")))

			case types.MethodExpr:
				return c.translateCall(e, sig, c.translateExpr(f))

			default:
				panic(fmt.Sprintf("unexpected sel.Kind(): %T", sel.Kind()))
			}
		default:
			return c.translateCall(e, sig, c.translateExpr(plainFun))
		}

	case *ast.StarExpr:
		if typesutil.IsJsObject(c.p.TypeOf(e.X)) {
			return c.formatExpr("new $jsObjectPtr(%e)", e.X)
		}
		if c1, isCall := e.X.(*ast.CallExpr); isCall && len(c1.Args) == 1 {
			if c2, isCall := c1.Args[0].(*ast.CallExpr); isCall && len(c2.Args) == 1 && types.Identical(c.p.TypeOf(c2.Fun), types.Typ[types.UnsafePointer]) {
				if unary, isUnary := c2.Args[0].(*ast.UnaryExpr); isUnary && unary.Op == token.AND {
					return c.translateExpr(unary.X) // unsafe conversion
				}
			}
		}
		switch exprType.Underlying().(type) {
		case *types.Struct, *types.Array:
			return c.translateExpr(e.X)
		}
		return c.formatExpr("%e.$get()", e.X)

	case *ast.TypeAssertExpr:
		if e.Type == nil {
			return c.translateExpr(e.X)
		}
		t := c.p.TypeOf(e.Type)
		if _, isTuple := exprType.(*types.Tuple); isTuple {
			return c.formatExpr("$assertType(%e, %s, true)", e.X, c.typeName(t))
		}
		return c.formatExpr("$assertType(%e, %s)", e.X, c.typeName(t))

	case *ast.Ident:
		if e.Name == "_" {
			panic("Tried to translate underscore identifier.")
		}
		switch o := obj.(type) {
		case *types.Var, *types.Const:
			return c.formatExpr("%s", c.objectName(o))
		case *types.Func:
			return c.formatExpr("%s", c.objectName(o))
		case *types.TypeName:
			return c.formatExpr("%s", c.typeName(o.Type()))
		case *types.Nil:
			if typesutil.IsJsObject(exprType) {
				return c.formatExpr("null")
			}
			switch t := exprType.Underlying().(type) {
			case *types.Basic:
				if t.Kind() != types.UnsafePointer {
					panic("unexpected basic type")
				}
				return c.formatExpr("0")
			case *types.Slice, *types.Pointer:
				return c.formatExpr("%s.nil", c.typeName(exprType))
			case *types.Chan:
				return c.formatExpr("$chanNil")
			case *types.Map:
				return c.formatExpr("false")
			case *types.Interface:
				return c.formatExpr("$ifaceNil")
			case *types.Signature:
				return c.formatExpr("$throwNilPointerError")
			default:
				panic(fmt.Sprintf("unexpected type: %T", t))
			}
		default:
			panic(fmt.Sprintf("Unhandled object: %T\n", o))
		}

	case *this:
		if isWrapped(c.p.TypeOf(e)) {
			return c.formatExpr("this.$val")
		}
		return c.formatExpr("this")

	case nil:
		return c.formatExpr("")

	default:
		panic(fmt.Sprintf("Unhandled expression: %T\n", e))

	}
}
Exemplo n.º 8
0
func (c *funcContext) translateStmt(stmt ast.Stmt, label *types.Label) {
	c.SetPos(stmt.Pos())

	stmt = filter.IncDecStmt(stmt, c.p.Info.Info)
	stmt = filter.Assign(stmt, c.p.Info.Info, c.p.Info.Pkg)

	switch s := stmt.(type) {
	case *ast.BlockStmt:
		c.translateStmtList(s.List)

	case *ast.IfStmt:
		var caseClauses []*ast.CaseClause
		ifStmt := s
		for {
			if ifStmt.Init != nil {
				panic("simplification error")
			}
			caseClauses = append(caseClauses, &ast.CaseClause{List: []ast.Expr{ifStmt.Cond}, Body: ifStmt.Body.List})
			elseStmt, ok := ifStmt.Else.(*ast.IfStmt)
			if !ok {
				break
			}
			ifStmt = elseStmt
		}
		var defaultClause *ast.CaseClause
		if block, ok := ifStmt.Else.(*ast.BlockStmt); ok {
			defaultClause = &ast.CaseClause{Body: block.List}
		}
		c.translateBranchingStmt(caseClauses, defaultClause, false, c.translateExpr, nil, c.Flattened[s])

	case *ast.SwitchStmt:
		if s.Init != nil || s.Tag != nil || len(s.Body.List) != 1 {
			panic("simplification error")
		}
		clause := s.Body.List[0].(*ast.CaseClause)
		if len(clause.List) != 0 {
			panic("simplification error")
		}

		prevFlowData := c.flowDatas[nil]
		data := &flowData{
			postStmt:  prevFlowData.postStmt,  // for "continue" of outer loop
			beginCase: prevFlowData.beginCase, // same
		}
		c.flowDatas[nil] = data
		c.flowDatas[label] = data
		defer func() {
			delete(c.flowDatas, label)
			c.flowDatas[nil] = prevFlowData
		}()

		if c.Flattened[s] {
			data.endCase = c.caseCounter
			c.caseCounter++

			c.Indent(func() {
				c.translateStmtList(clause.Body)
			})
			c.Printf("case %d:", data.endCase)
			return
		}

		if label != nil || analysis.HasBreak(clause) {
			if label != nil {
				c.Printf("%s:", label.Name())
			}
			c.Printf("switch (0) { default:")
			c.Indent(func() {
				c.translateStmtList(clause.Body)
			})
			c.Printf("}")
			return
		}

		c.translateStmtList(clause.Body)

	case *ast.TypeSwitchStmt:
		if s.Init != nil {
			c.translateStmt(s.Init, nil)
		}
		refVar := c.newVariable("_ref")
		var expr ast.Expr
		switch a := s.Assign.(type) {
		case *ast.AssignStmt:
			expr = a.Rhs[0].(*ast.TypeAssertExpr).X
		case *ast.ExprStmt:
			expr = a.X.(*ast.TypeAssertExpr).X
		}
		c.Printf("%s = %s;", refVar, c.translateExpr(expr))
		translateCond := func(cond ast.Expr) *expression {
			if types.Identical(c.p.TypeOf(cond), types.Typ[types.UntypedNil]) {
				return c.formatExpr("%s === $ifaceNil", refVar)
			}
			return c.formatExpr("$assertType(%s, %s, true)[1]", refVar, c.typeName(c.p.TypeOf(cond)))
		}
		var caseClauses []*ast.CaseClause
		var defaultClause *ast.CaseClause
		for _, cc := range s.Body.List {
			clause := cc.(*ast.CaseClause)
			var bodyPrefix []ast.Stmt
			if implicit := c.p.Implicits[clause]; implicit != nil {
				value := refVar
				if _, isInterface := implicit.Type().Underlying().(*types.Interface); !isInterface {
					value += ".$val"
				}
				bodyPrefix = []ast.Stmt{&ast.AssignStmt{
					Lhs: []ast.Expr{c.newIdent(c.objectName(implicit), implicit.Type())},
					Tok: token.DEFINE,
					Rhs: []ast.Expr{c.newIdent(value, implicit.Type())},
				}}
			}
			c := &ast.CaseClause{
				List: clause.List,
				Body: append(bodyPrefix, clause.Body...),
			}
			if len(c.List) == 0 {
				defaultClause = c
				continue
			}
			caseClauses = append(caseClauses, c)
		}
		c.translateBranchingStmt(caseClauses, defaultClause, true, translateCond, label, c.Flattened[s])

	case *ast.ForStmt:
		if s.Init != nil {
			c.translateStmt(s.Init, nil)
		}
		cond := func() string {
			if s.Cond == nil {
				return "true"
			}
			return c.translateExpr(s.Cond).String()
		}
		c.translateLoopingStmt(cond, s.Body, nil, func() {
			if s.Post != nil {
				c.translateStmt(s.Post, nil)
			}
		}, label, c.Flattened[s])

	case *ast.RangeStmt:
		refVar := c.newVariable("_ref")
		c.Printf("%s = %s;", refVar, c.translateExpr(s.X))

		switch t := c.p.TypeOf(s.X).Underlying().(type) {
		case *types.Basic:
			iVar := c.newVariable("_i")
			c.Printf("%s = 0;", iVar)
			runeVar := c.newVariable("_rune")
			c.translateLoopingStmt(func() string { return iVar + " < " + refVar + ".length" }, s.Body, func() {
				c.Printf("%s = $decodeRune(%s, %s);", runeVar, refVar, iVar)
				if !isBlank(s.Key) {
					c.Printf("%s", c.translateAssign(s.Key, c.newIdent(iVar, types.Typ[types.Int]), s.Tok == token.DEFINE))
				}
				if !isBlank(s.Value) {
					c.Printf("%s", c.translateAssign(s.Value, c.newIdent(runeVar+"[0]", types.Typ[types.Rune]), s.Tok == token.DEFINE))
				}
			}, func() {
				c.Printf("%s += %s[1];", iVar, runeVar)
			}, label, c.Flattened[s])

		case *types.Map:
			iVar := c.newVariable("_i")
			c.Printf("%s = 0;", iVar)
			keysVar := c.newVariable("_keys")
			c.Printf("%s = $keys(%s);", keysVar, refVar)
			c.translateLoopingStmt(func() string { return iVar + " < " + keysVar + ".length" }, s.Body, func() {
				entryVar := c.newVariable("_entry")
				c.Printf("%s = %s[%s[%s]];", entryVar, refVar, keysVar, iVar)
				c.translateStmt(&ast.IfStmt{
					Cond: c.newIdent(entryVar+" === undefined", types.Typ[types.Bool]),
					Body: &ast.BlockStmt{List: []ast.Stmt{&ast.BranchStmt{Tok: token.CONTINUE}}},
				}, nil)
				if !isBlank(s.Key) {
					c.Printf("%s", c.translateAssign(s.Key, c.newIdent(entryVar+".k", t.Key()), s.Tok == token.DEFINE))
				}
				if !isBlank(s.Value) {
					c.Printf("%s", c.translateAssign(s.Value, c.newIdent(entryVar+".v", t.Elem()), s.Tok == token.DEFINE))
				}
			}, func() {
				c.Printf("%s++;", iVar)
			}, label, c.Flattened[s])

		case *types.Array, *types.Pointer, *types.Slice:
			var length string
			var elemType types.Type
			switch t2 := t.(type) {
			case *types.Array:
				length = fmt.Sprintf("%d", t2.Len())
				elemType = t2.Elem()
			case *types.Pointer:
				length = fmt.Sprintf("%d", t2.Elem().Underlying().(*types.Array).Len())
				elemType = t2.Elem().Underlying().(*types.Array).Elem()
			case *types.Slice:
				length = refVar + ".$length"
				elemType = t2.Elem()
			}
			iVar := c.newVariable("_i")
			c.Printf("%s = 0;", iVar)
			c.translateLoopingStmt(func() string { return iVar + " < " + length }, s.Body, func() {
				if !isBlank(s.Key) {
					c.Printf("%s", c.translateAssign(s.Key, c.newIdent(iVar, types.Typ[types.Int]), s.Tok == token.DEFINE))
				}
				if !isBlank(s.Value) {
					c.Printf("%s", c.translateAssign(s.Value, c.setType(&ast.IndexExpr{
						X:     c.newIdent(refVar, t),
						Index: c.newIdent(iVar, types.Typ[types.Int]),
					}, elemType), s.Tok == token.DEFINE))
				}
			}, func() {
				c.Printf("%s++;", iVar)
			}, label, c.Flattened[s])

		case *types.Chan:
			okVar := c.newIdent(c.newVariable("_ok"), types.Typ[types.Bool])
			key := s.Key
			tok := s.Tok
			if key == nil {
				key = ast.NewIdent("_")
				tok = token.ASSIGN
			}
			forStmt := &ast.ForStmt{
				Body: &ast.BlockStmt{
					List: []ast.Stmt{
						&ast.AssignStmt{
							Lhs: []ast.Expr{
								key,
								okVar,
							},
							Rhs: []ast.Expr{
								c.setType(&ast.UnaryExpr{X: c.newIdent(refVar, t), Op: token.ARROW}, types.NewTuple(types.NewVar(0, nil, "", t.Elem()), types.NewVar(0, nil, "", types.Typ[types.Bool]))),
							},
							Tok: tok,
						},
						&ast.IfStmt{
							Cond: &ast.UnaryExpr{X: okVar, Op: token.NOT},
							Body: &ast.BlockStmt{List: []ast.Stmt{&ast.BranchStmt{Tok: token.BREAK}}},
						},
						s.Body,
					},
				},
			}
			c.Flattened[forStmt] = true
			c.translateStmt(forStmt, label)

		default:
			panic("")
		}

	case *ast.BranchStmt:
		normalLabel := ""
		blockingLabel := ""
		data := c.flowDatas[nil]
		if s.Label != nil {
			normalLabel = " " + s.Label.Name
			blockingLabel = " s" // use explicit label "s", because surrounding loop may not be flattened
			data = c.flowDatas[c.p.Uses[s.Label].(*types.Label)]
		}
		switch s.Tok {
		case token.BREAK:
			c.PrintCond(data.endCase == 0, fmt.Sprintf("break%s;", normalLabel), fmt.Sprintf("$s = %d; continue%s;", data.endCase, blockingLabel))
		case token.CONTINUE:
			data.postStmt()
			c.PrintCond(data.beginCase == 0, fmt.Sprintf("continue%s;", normalLabel), fmt.Sprintf("$s = %d; continue%s;", data.beginCase, blockingLabel))
		case token.GOTO:
			c.PrintCond(false, "goto "+s.Label.Name, fmt.Sprintf("$s = %d; continue;", c.labelCase(c.p.Uses[s.Label].(*types.Label))))
		case token.FALLTHROUGH:
			// handled in CaseClause
		default:
			panic("Unhandled branch statment: " + s.Tok.String())
		}

	case *ast.ReturnStmt:
		results := s.Results
		if c.resultNames != nil {
			if len(s.Results) != 0 {
				c.translateStmt(&ast.AssignStmt{
					Lhs: c.resultNames,
					Tok: token.ASSIGN,
					Rhs: s.Results,
				}, nil)
			}
			results = c.resultNames
		}
		rVal := c.translateResults(results)
		if c.Flattened[s] {
			resumeCase := c.caseCounter
			c.caseCounter++
			c.Printf("/* */ $s = %[1]d; case %[1]d:", resumeCase)
		}
		c.Printf("return%s;", rVal)

	case *ast.DeferStmt:
		isBuiltin := false
		isJs := false
		switch fun := s.Call.Fun.(type) {
		case *ast.Ident:
			var builtin *types.Builtin
			builtin, isBuiltin = c.p.Uses[fun].(*types.Builtin)
			if isBuiltin && builtin.Name() == "recover" {
				c.Printf("$deferred.push([$recover, []]);")
				return
			}
		case *ast.SelectorExpr:
			isJs = typesutil.IsJsPackage(c.p.Uses[fun.Sel].Pkg())
		}
		sig := c.p.TypeOf(s.Call.Fun).Underlying().(*types.Signature)
		args := c.translateArgs(sig, s.Call.Args, s.Call.Ellipsis.IsValid(), true)
		if isBuiltin || isJs {
			vars := make([]string, len(s.Call.Args))
			callArgs := make([]ast.Expr, len(s.Call.Args))
			for i, arg := range s.Call.Args {
				v := c.newVariable("_arg")
				vars[i] = v
				callArgs[i] = c.newIdent(v, c.p.TypeOf(arg))
			}
			call := c.translateExpr(&ast.CallExpr{
				Fun:      s.Call.Fun,
				Args:     callArgs,
				Ellipsis: s.Call.Ellipsis,
			})
			c.Printf("$deferred.push([function(%s) { %s; }, [%s]]);", strings.Join(vars, ", "), call, strings.Join(args, ", "))
			return
		}
		c.Printf("$deferred.push([%s, [%s]]);", c.translateExpr(s.Call.Fun), strings.Join(args, ", "))

	case *ast.AssignStmt:
		if s.Tok != token.ASSIGN && s.Tok != token.DEFINE {
			panic(s.Tok)
		}

		switch {
		case len(s.Lhs) == 1 && len(s.Rhs) == 1:
			lhs := astutil.RemoveParens(s.Lhs[0])
			if isBlank(lhs) {
				if analysis.HasSideEffect(s.Rhs[0], c.p.Info.Info) {
					c.Printf("%s;", c.translateExpr(s.Rhs[0]))
				}
				return
			}
			c.Printf("%s", c.translateAssign(lhs, s.Rhs[0], s.Tok == token.DEFINE))

		case len(s.Lhs) > 1 && len(s.Rhs) == 1:
			tupleVar := c.newVariable("_tuple")
			c.Printf("%s = %s;", tupleVar, c.translateExpr(s.Rhs[0]))
			tuple := c.p.TypeOf(s.Rhs[0]).(*types.Tuple)
			for i, lhs := range s.Lhs {
				lhs = astutil.RemoveParens(lhs)
				if !isBlank(lhs) {
					c.Printf("%s", c.translateAssign(lhs, c.newIdent(fmt.Sprintf("%s[%d]", tupleVar, i), tuple.At(i).Type()), s.Tok == token.DEFINE))
				}
			}
		case len(s.Lhs) == len(s.Rhs):
			tmpVars := make([]string, len(s.Rhs))
			for i, rhs := range s.Rhs {
				tmpVars[i] = c.newVariable("_tmp")
				if isBlank(astutil.RemoveParens(s.Lhs[i])) {
					if analysis.HasSideEffect(rhs, c.p.Info.Info) {
						c.Printf("%s;", c.translateExpr(rhs))
					}
					continue
				}
				c.Printf("%s", c.translateAssign(c.newIdent(tmpVars[i], c.p.TypeOf(s.Lhs[i])), rhs, true))
			}
			for i, lhs := range s.Lhs {
				lhs = astutil.RemoveParens(lhs)
				if !isBlank(lhs) {
					c.Printf("%s", c.translateAssign(lhs, c.newIdent(tmpVars[i], c.p.TypeOf(lhs)), s.Tok == token.DEFINE))
				}
			}

		default:
			panic("Invalid arity of AssignStmt.")

		}

	case *ast.DeclStmt:
		decl := s.Decl.(*ast.GenDecl)
		switch decl.Tok {
		case token.VAR:
			for _, spec := range s.Decl.(*ast.GenDecl).Specs {
				valueSpec := spec.(*ast.ValueSpec)
				lhs := make([]ast.Expr, len(valueSpec.Names))
				for i, name := range valueSpec.Names {
					lhs[i] = name
				}
				rhs := valueSpec.Values
				if len(rhs) == 0 {
					rhs = make([]ast.Expr, len(lhs))
					for i, e := range lhs {
						rhs[i] = c.zeroValue(c.p.TypeOf(e))
					}
				}
				c.translateStmt(&ast.AssignStmt{
					Lhs: lhs,
					Tok: token.DEFINE,
					Rhs: rhs,
				}, nil)
			}
		case token.TYPE:
			for _, spec := range decl.Specs {
				o := c.p.Defs[spec.(*ast.TypeSpec).Name].(*types.TypeName)
				c.p.typeNames = append(c.p.typeNames, o)
				c.p.objectNames[o] = c.newVariableWithLevel(o.Name(), true)
				c.p.dependencies[o] = true
			}
		case token.CONST:
			// skip, constants are inlined
		}

	case *ast.ExprStmt:
		expr := c.translateExpr(s.X)
		if expr != nil && expr.String() != "" {
			c.Printf("%s;", expr)
		}

	case *ast.LabeledStmt:
		label := c.p.Defs[s.Label].(*types.Label)
		if c.GotoLabel[label] {
			c.PrintCond(false, s.Label.Name+":", fmt.Sprintf("case %d:", c.labelCase(label)))
		}
		c.translateStmt(s.Stmt, label)

	case *ast.GoStmt:
		c.Printf("$go(%s, [%s]);", c.translateExpr(s.Call.Fun), strings.Join(c.translateArgs(c.p.TypeOf(s.Call.Fun).Underlying().(*types.Signature), s.Call.Args, s.Call.Ellipsis.IsValid(), true), ", "))

	case *ast.SendStmt:
		chanType := c.p.TypeOf(s.Chan).Underlying().(*types.Chan)
		call := &ast.CallExpr{
			Fun:  c.newIdent("$send", types.NewSignature(nil, types.NewTuple(types.NewVar(0, nil, "", chanType), types.NewVar(0, nil, "", chanType.Elem())), nil, false)),
			Args: []ast.Expr{s.Chan, c.newIdent(c.translateImplicitConversionWithCloning(s.Value, chanType.Elem()).String(), chanType.Elem())},
		}
		c.Blocking[call] = true
		c.translateStmt(&ast.ExprStmt{X: call}, label)

	case *ast.SelectStmt:
		selectionVar := c.newVariable("_selection")
		var channels []string
		var caseClauses []*ast.CaseClause
		flattened := false
		hasDefault := false
		for i, cc := range s.Body.List {
			clause := cc.(*ast.CommClause)
			switch comm := clause.Comm.(type) {
			case nil:
				channels = append(channels, "[]")
				hasDefault = true
			case *ast.ExprStmt:
				channels = append(channels, c.formatExpr("[%e]", astutil.RemoveParens(comm.X).(*ast.UnaryExpr).X).String())
			case *ast.AssignStmt:
				channels = append(channels, c.formatExpr("[%e]", astutil.RemoveParens(comm.Rhs[0]).(*ast.UnaryExpr).X).String())
			case *ast.SendStmt:
				chanType := c.p.TypeOf(comm.Chan).Underlying().(*types.Chan)
				channels = append(channels, c.formatExpr("[%e, %s]", comm.Chan, c.translateImplicitConversionWithCloning(comm.Value, chanType.Elem())).String())
			default:
				panic(fmt.Sprintf("unhandled: %T", comm))
			}

			indexLit := &ast.BasicLit{Kind: token.INT}
			c.p.Types[indexLit] = types.TypeAndValue{Type: types.Typ[types.Int], Value: constant.MakeInt64(int64(i))}

			var bodyPrefix []ast.Stmt
			if assign, ok := clause.Comm.(*ast.AssignStmt); ok {
				switch rhsType := c.p.TypeOf(assign.Rhs[0]).(type) {
				case *types.Tuple:
					bodyPrefix = []ast.Stmt{&ast.AssignStmt{Lhs: assign.Lhs, Rhs: []ast.Expr{c.newIdent(selectionVar+"[1]", rhsType)}, Tok: assign.Tok}}
				default:
					bodyPrefix = []ast.Stmt{&ast.AssignStmt{Lhs: assign.Lhs, Rhs: []ast.Expr{c.newIdent(selectionVar+"[1][0]", rhsType)}, Tok: assign.Tok}}
				}
			}

			caseClauses = append(caseClauses, &ast.CaseClause{
				List: []ast.Expr{indexLit},
				Body: append(bodyPrefix, clause.Body...),
			})

			flattened = flattened || c.Flattened[clause]
		}

		selectCall := c.setType(&ast.CallExpr{
			Fun:  c.newIdent("$select", types.NewSignature(nil, types.NewTuple(types.NewVar(0, nil, "", types.NewInterface(nil, nil))), types.NewTuple(types.NewVar(0, nil, "", types.Typ[types.Int])), false)),
			Args: []ast.Expr{c.newIdent(fmt.Sprintf("[%s]", strings.Join(channels, ", ")), types.NewInterface(nil, nil))},
		}, types.Typ[types.Int])
		c.Blocking[selectCall] = !hasDefault
		c.Printf("%s = %s;", selectionVar, c.translateExpr(selectCall))

		if len(caseClauses) != 0 {
			translateCond := func(cond ast.Expr) *expression {
				return c.formatExpr("%s[0] === %e", selectionVar, cond)
			}
			c.translateBranchingStmt(caseClauses, nil, true, translateCond, label, flattened)
		}

	case *ast.EmptyStmt:
		// skip

	default:
		panic(fmt.Sprintf("Unhandled statement: %T\n", s))

	}
}
Exemplo n.º 9
0
// parent is the package which declared the type; parent == nil means
// the package currently imported. The parent package is needed for
// exported struct fields and interface methods which don't contain
// explicit package information in the export data.
func (p *importer) typ(parent *types.Package) types.Type {
	// if the type was seen before, i is its index (>= 0)
	i := p.tagOrIndex()
	if i >= 0 {
		return p.typList[i]
	}

	// otherwise, i is the type tag (< 0)
	switch i {
	case namedTag:
		// read type object
		pos := p.pos()
		parent, name := p.qualifiedName()
		scope := parent.Scope()
		obj := scope.Lookup(name)

		// if the object doesn't exist yet, create and insert it
		if obj == nil {
			obj = types.NewTypeName(pos, parent, name, nil)
			scope.Insert(obj)
		}

		if _, ok := obj.(*types.TypeName); !ok {
			errorf("pkg = %s, name = %s => %s", parent, name, obj)
		}

		// associate new named type with obj if it doesn't exist yet
		t0 := types.NewNamed(obj.(*types.TypeName), nil, nil)

		// but record the existing type, if any
		t := obj.Type().(*types.Named)
		p.record(t)

		// read underlying type
		t0.SetUnderlying(p.typ(parent))

		// interfaces don't have associated methods
		if types.IsInterface(t0) {
			return t
		}

		// read associated methods
		for i := p.int(); i > 0; i-- {
			// TODO(gri) replace this with something closer to fieldName
			pos := p.pos()
			name := p.string()
			if !exported(name) {
				p.pkg()
			}

			recv, _ := p.paramList() // TODO(gri) do we need a full param list for the receiver?
			params, isddd := p.paramList()
			result, _ := p.paramList()
			p.int() // go:nointerface pragma - discarded

			sig := types.NewSignature(recv.At(0), params, result, isddd)
			t0.AddMethod(types.NewFunc(pos, parent, name, sig))
		}

		return t

	case arrayTag:
		t := new(types.Array)
		if p.trackAllTypes {
			p.record(t)
		}

		n := p.int64()
		*t = *types.NewArray(p.typ(parent), n)
		return t

	case sliceTag:
		t := new(types.Slice)
		if p.trackAllTypes {
			p.record(t)
		}

		*t = *types.NewSlice(p.typ(parent))
		return t

	case dddTag:
		t := new(dddSlice)
		if p.trackAllTypes {
			p.record(t)
		}

		t.elem = p.typ(parent)
		return t

	case structTag:
		t := new(types.Struct)
		if p.trackAllTypes {
			p.record(t)
		}

		*t = *types.NewStruct(p.fieldList(parent))
		return t

	case pointerTag:
		t := new(types.Pointer)
		if p.trackAllTypes {
			p.record(t)
		}

		*t = *types.NewPointer(p.typ(parent))
		return t

	case signatureTag:
		t := new(types.Signature)
		if p.trackAllTypes {
			p.record(t)
		}

		params, isddd := p.paramList()
		result, _ := p.paramList()
		*t = *types.NewSignature(nil, params, result, isddd)
		return t

	case interfaceTag:
		// Create a dummy entry in the type list. This is safe because we
		// cannot expect the interface type to appear in a cycle, as any
		// such cycle must contain a named type which would have been
		// first defined earlier.
		n := len(p.typList)
		if p.trackAllTypes {
			p.record(nil)
		}

		// no embedded interfaces with gc compiler
		if p.int() != 0 {
			errorf("unexpected embedded interface")
		}

		t := types.NewInterface(p.methodList(parent), nil)
		if p.trackAllTypes {
			p.typList[n] = t
		}
		return t

	case mapTag:
		t := new(types.Map)
		if p.trackAllTypes {
			p.record(t)
		}

		key := p.typ(parent)
		val := p.typ(parent)
		*t = *types.NewMap(key, val)
		return t

	case chanTag:
		t := new(types.Chan)
		if p.trackAllTypes {
			p.record(t)
		}

		var dir types.ChanDir
		// tag values must match the constants in cmd/compile/internal/gc/go.go
		switch d := p.int(); d {
		case 1 /* Crecv */ :
			dir = types.RecvOnly
		case 2 /* Csend */ :
			dir = types.SendOnly
		case 3 /* Cboth */ :
			dir = types.SendRecv
		default:
			errorf("unexpected channel dir %d", d)
		}
		val := p.typ(parent)
		*t = *types.NewChan(dir, val)
		return t

	default:
		errorf("unexpected type tag %d", i) // panics
		panic("unreachable")
	}
}
Exemplo n.º 10
0
func (p *importer) typ() types.Type {
	// if the type was seen before, i is its index (>= 0)
	i := p.int()
	if i >= 0 {
		return p.typList[i]
	}

	// otherwise, i is the type tag (< 0)
	switch i {
	case arrayTag:
		t := new(types.Array)
		p.record(t)

		n := p.int64()
		*t = *types.NewArray(p.typ(), n)
		return t

	case sliceTag:
		t := new(types.Slice)
		p.record(t)

		*t = *types.NewSlice(p.typ())
		return t

	case structTag:
		t := new(types.Struct)
		p.record(t)

		n := p.int()
		fields := make([]*types.Var, n)
		tags := make([]string, n)
		for i := range fields {
			fields[i] = p.field()
			tags[i] = p.string()
		}
		*t = *types.NewStruct(fields, tags)
		return t

	case pointerTag:
		t := new(types.Pointer)
		p.record(t)

		*t = *types.NewPointer(p.typ())
		return t

	case signatureTag:
		t := new(types.Signature)
		p.record(t)

		*t = *p.signature()
		return t

	case interfaceTag:
		// Create a dummy entry in the type list. This is safe because we
		// cannot expect the interface type to appear in a cycle, as any
		// such cycle must contain a named type which would have been
		// first defined earlier.
		n := len(p.typList)
		p.record(nil)

		// read embedded interfaces
		embeddeds := make([]*types.Named, p.int())
		for i := range embeddeds {
			embeddeds[i] = p.typ().(*types.Named)
		}

		// read methods
		methods := make([]*types.Func, p.int())
		for i := range methods {
			pkg, name := p.qualifiedName()
			methods[i] = types.NewFunc(token.NoPos, pkg, name, p.typ().(*types.Signature))
		}

		t := types.NewInterface(methods, embeddeds)
		p.typList[n] = t
		return t

	case mapTag:
		t := new(types.Map)
		p.record(t)

		*t = *types.NewMap(p.typ(), p.typ())
		return t

	case chanTag:
		t := new(types.Chan)
		p.record(t)

		*t = *types.NewChan(types.ChanDir(p.int()), p.typ())
		return t

	case namedTag:
		// read type object
		name := p.string()
		pkg := p.pkg()
		scope := pkg.Scope()
		obj := scope.Lookup(name)

		// if the object doesn't exist yet, create and insert it
		if obj == nil {
			obj = types.NewTypeName(token.NoPos, pkg, name, nil)
			scope.Insert(obj)
		}

		// associate new named type with obj if it doesn't exist yet
		t0 := types.NewNamed(obj.(*types.TypeName), nil, nil)

		// but record the existing type, if any
		t := obj.Type().(*types.Named)
		p.record(t)

		// read underlying type
		t0.SetUnderlying(p.typ())

		// read associated methods
		for i, n := 0, p.int(); i < n; i++ {
			t0.AddMethod(types.NewFunc(token.NoPos, pkg, p.string(), p.typ().(*types.Signature)))
		}

		return t

	default:
		panic(fmt.Sprintf("unexpected type tag %d", i))
	}
}