// Appends to data the first (len(data) / 32)bits of the result of sha256(data) // Currently only supports data up to 32 bytes func addChecksum(data []byte) []byte { // Get first byte of sha256 hasher := sha256.New() hasher.Write(data) hash := hasher.Sum(nil) firstChecksumByte := hash[0] // len() is in bytes so we divide by 4 checksumBitLength := uint(len(data) / 4) // For each bit of check sum we want we shift the data one the left // and then set the (new) right most bit equal to checksum bit at that index // staring from the left dataBigInt := new(big.Int).SetBytes(data) for i := uint(0); i < checksumBitLength; i++ { // Bitshift 1 left dataBigInt.Mul(dataBigInt, BigTwo) // Set rightmost bit if leftmost checksum bit is set if uint8(firstChecksumByte&(1<<(7-i))) > 0 { dataBigInt.Or(dataBigInt, BigOne) } } return dataBigInt.Bytes() }
func CreateBloom(receipts Receipts) Bloom { bin := new(big.Int) for _, receipt := range receipts { bin.Or(bin, LogsBloom(receipt.logs)) } return BytesToBloom(bin.Bytes()) }
func bloom9(b []byte) *big.Int { b = crypto.Sha3(b[:]) r := new(big.Int) for i := 0; i < 6; i += 2 { t := big.NewInt(1) b := (uint(b[i+1]) + (uint(b[i]) << 8)) & 2047 r.Or(r, t.Lsh(t, b)) } return r }
// trunc truncates a value to the range of the given type. func (t *_type) trunc(x *big.Int) *big.Int { r := new(big.Int) m := new(big.Int) m.Lsh(one, t.bits) m.Sub(m, one) r.And(x, m) if t.signed && r.Bit(int(t.bits)-1) == 1 { m.Neg(one) m.Lsh(m, t.bits) r.Or(r, m) } return r }
func binaryIntOp(x *big.Int, op token.Token, y *big.Int) interface{} { var z big.Int switch op { case token.ADD: return z.Add(x, y) case token.SUB: return z.Sub(x, y) case token.MUL: return z.Mul(x, y) case token.QUO: return z.Quo(x, y) case token.REM: return z.Rem(x, y) case token.AND: return z.And(x, y) case token.OR: return z.Or(x, y) case token.XOR: return z.Xor(x, y) case token.AND_NOT: return z.AndNot(x, y) case token.SHL: // The shift length must be uint, or untyped int and // convertible to uint. // TODO 32/64bit if y.BitLen() > 32 { panic("Excessive shift length") } return z.Lsh(x, uint(y.Int64())) case token.SHR: if y.BitLen() > 32 { panic("Excessive shift length") } return z.Rsh(x, uint(y.Int64())) case token.EQL: return x.Cmp(y) == 0 case token.NEQ: return x.Cmp(y) != 0 case token.LSS: return x.Cmp(y) < 0 case token.LEQ: return x.Cmp(y) <= 0 case token.GTR: return x.Cmp(y) > 0 case token.GEQ: return x.Cmp(y) >= 0 } panic("unreachable") }
func bigIntOr(oldValues [][]byte, newValues [][]byte, w float64) (result [][]byte) { var sum *big.Int if oldValues != nil { sum = new(big.Int).SetBytes(oldValues[0]) for _, b := range newValues { sum.Or(sum, new(big.Int).Mul(common.DecodeBigInt(b), big.NewInt(int64(w)))) } } else { sum = new(big.Int).Mul(new(big.Int).SetBytes(newValues[0]), big.NewInt(int64(w))) for _, b := range newValues[1:] { sum.Or(sum, new(big.Int).Mul(common.DecodeBigInt(b), big.NewInt(int64(w)))) } } return [][]byte{sum.Bytes()} }
func LogsBloom(logs state.Logs) *big.Int { bin := new(big.Int) for _, log := range logs { data := make([]common.Hash, len(log.Topics)) bin.Or(bin, bloom9(log.Address.Bytes())) for i, topic := range log.Topics { data[i] = topic } for _, b := range data { bin.Or(bin, bloom9(b[:])) } } return bin }
// LastUsable returns the last address in a given network. func (ipv6 IPv6Addr) LastUsable() IPAddr { addr := new(big.Int) addr.Set(ipv6.Address) mask := new(big.Int) mask.Set(ipv6.Mask) negMask := new(big.Int) negMask.Xor(ipv6HostMask, mask) lastAddr := new(big.Int) lastAddr.And(addr, mask) lastAddr.Or(lastAddr, negMask) return IPv6Addr{ Address: IPv6Address(lastAddr), Mask: ipv6HostMask, } }
func main() { var n, e, d, bb, ptn, etn, dtn big.Int pt := "Rosetta Code" fmt.Println("Plain text: ", pt) // a key set big enough to hold 16 bytes of plain text in // a single block (to simplify the example) and also big enough // to demonstrate efficiency of modular exponentiation. n.SetString("9516311845790656153499716760847001433441357", 10) e.SetString("65537", 10) d.SetString("5617843187844953170308463622230283376298685", 10) // convert plain text to a number for _, b := range []byte(pt) { ptn.Or(ptn.Lsh(&ptn, 8), bb.SetInt64(int64(b))) } if ptn.Cmp(&n) >= 0 { fmt.Println("Plain text message too long") return } fmt.Println("Plain text as a number:", &ptn) // encode a single number etn.Exp(&ptn, &e, &n) fmt.Println("Encoded: ", &etn) // decode a single number dtn.Exp(&etn, &d, &n) fmt.Println("Decoded: ", &dtn) // convert number to text var db [16]byte dx := 16 bff := big.NewInt(0xff) for dtn.BitLen() > 0 { dx-- db[dx] = byte(bb.And(&dtn, bff).Int64()) dtn.Rsh(&dtn, 8) } fmt.Println("Decoded number as text:", string(db[dx:])) }
func binaryIntOp(x *big.Int, op token.Token, y *big.Int) interface{} { var z big.Int switch op { case token.ADD: return z.Add(x, y) case token.SUB: return z.Sub(x, y) case token.MUL: return z.Mul(x, y) case token.QUO: return z.Quo(x, y) case token.REM: return z.Rem(x, y) case token.AND: return z.And(x, y) case token.OR: return z.Or(x, y) case token.XOR: return z.Xor(x, y) case token.AND_NOT: return z.AndNot(x, y) case token.SHL: panic("unimplemented") case token.SHR: panic("unimplemented") case token.EQL: return x.Cmp(y) == 0 case token.NEQ: return x.Cmp(y) != 0 case token.LSS: return x.Cmp(y) < 0 case token.LEQ: return x.Cmp(y) <= 0 case token.GTR: return x.Cmp(y) > 0 case token.GEQ: return x.Cmp(y) >= 0 } panic("unreachable") }
func (self *Decoder) decode_int(size uint) *big.Int { if size == 1 { int_byte, err := self.reader.ReadByte() self.store_err(err) self.readcount++ return big.NewInt(int64(int_byte)) } else if size == 2 { var buf [2]byte n, err := io.ReadFull(self.reader, buf[:]) self.store_err(err) self.readcount += int64(n) return big.NewInt(int64(buf[0])<<8 | int64(buf[1])) } else if size == 4 { var buf [4]byte n, err := io.ReadFull(self.reader, buf[:]) self.store_err(err) self.readcount += int64(n) return big.NewInt(int64(buf[0])<<24 | int64(buf[1])<<16 | int64(buf[2])<<8 | int64(buf[3])) } else if size == 0 { result := new(big.Int) thisbyte := uint8(0xff) for thisbyte&0x80 != 0 { var err error thisbyte, err = self.reader.ReadByte() self.store_err(err) self.readcount++ if err != nil { return new(big.Int) } result.Lsh(result, 7) result.Or(result, big.NewInt(int64(thisbyte&0x7f))) } return result } else { panic("jksn: size not in (1, 2, 4, 0)") } return new(big.Int) }
func (b *Bloom) Add(d *big.Int) { bin := new(big.Int).SetBytes(b[:]) bin.Or(bin, bloom9(d.Bytes())) b.SetBytes(bin.Bytes()) }
func (self *Vm) RunClosure(closure *Closure) (ret []byte, err error) { if self.Recoverable { // Recover from any require exception defer func() { if r := recover(); r != nil { ret = closure.Return(nil) err = fmt.Errorf("%v", r) vmlogger.Errorln("vm err", err) } }() } // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } // Don't bother with the execution if there's no code. if len(closure.Code) == 0 { return closure.Return(nil), nil } vmlogger.Debugf("(%s) %x gas: %v (d) %x\n", self.Fn, closure.Address(), closure.Gas, closure.Args) var ( op OpCode mem = &Memory{} stack = NewStack() pc = big.NewInt(0) step = 0 prevStep = 0 require = func(m int) { if stack.Len() < m { panic(fmt.Sprintf("%04v (%v) stack err size = %d, required = %d", pc, op, stack.Len(), m)) } } ) for { prevStep = step // The base for all big integer arithmetic base := new(big.Int) step++ // Get the memory location of pc val := closure.Get(pc) // Get the opcode (it must be an opcode!) op = OpCode(val.Uint()) // XXX Leave this Println intact. Don't change this to the log system. // Used for creating diffs between implementations if self.logTy == LogTyDiff { /* switch op { case STOP, RETURN, SUICIDE: closure.object.EachStorage(func(key string, value *ethutil.Value) { value.Decode() fmt.Printf("%x %x\n", new(big.Int).SetBytes([]byte(key)).Bytes(), value.Bytes()) }) } */ b := pc.Bytes() if len(b) == 0 { b = []byte{0} } fmt.Printf("%x %x %x %x\n", closure.Address(), b, []byte{byte(op)}, closure.Gas.Bytes()) } gas := new(big.Int) addStepGasUsage := func(amount *big.Int) { if amount.Cmp(ethutil.Big0) >= 0 { gas.Add(gas, amount) } } addStepGasUsage(GasStep) var newMemSize uint64 = 0 switch op { case STOP: gas.Set(ethutil.Big0) case SUICIDE: gas.Set(ethutil.Big0) case SLOAD: gas.Set(GasSLoad) case SSTORE: var mult *big.Int y, x := stack.Peekn() val := closure.GetStorage(x) if val.BigInt().Cmp(ethutil.Big0) == 0 && len(y.Bytes()) > 0 { mult = ethutil.Big2 } else if val.BigInt().Cmp(ethutil.Big0) != 0 && len(y.Bytes()) == 0 { mult = ethutil.Big0 } else { mult = ethutil.Big1 } gas = new(big.Int).Mul(mult, GasSStore) case BALANCE: gas.Set(GasBalance) case MSTORE: require(2) newMemSize = stack.Peek().Uint64() + 32 case MLOAD: require(1) newMemSize = stack.Peek().Uint64() + 32 case MSTORE8: require(2) newMemSize = stack.Peek().Uint64() + 1 case RETURN: require(2) newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-2].Uint64() case SHA3: require(2) gas.Set(GasSha) newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-2].Uint64() case CALLDATACOPY: require(3) newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-3].Uint64() case CODECOPY: require(3) newMemSize = stack.Peek().Uint64() + stack.data[stack.Len()-3].Uint64() case CALL: require(7) gas.Set(GasCall) addStepGasUsage(stack.data[stack.Len()-1]) x := stack.data[stack.Len()-6].Uint64() + stack.data[stack.Len()-7].Uint64() y := stack.data[stack.Len()-4].Uint64() + stack.data[stack.Len()-5].Uint64() newMemSize = uint64(math.Max(float64(x), float64(y))) case CREATE: require(3) gas.Set(GasCreate) newMemSize = stack.data[stack.Len()-2].Uint64() + stack.data[stack.Len()-3].Uint64() } newMemSize = (newMemSize + 31) / 32 * 32 if newMemSize > uint64(mem.Len()) { m := GasMemory.Uint64() * (newMemSize - uint64(mem.Len())) / 32 addStepGasUsage(big.NewInt(int64(m))) } if !closure.UseGas(gas) { err := fmt.Errorf("Insufficient gas for %v. req %v has %v", op, gas, closure.Gas) closure.UseGas(closure.Gas) return closure.Return(nil), err } self.Printf("(pc) %-3d -o- %-14s", pc, op.String()) self.Printf(" (g) %-3v (%v)", gas, closure.Gas) mem.Resize(newMemSize) switch op { case LOG: stack.Print() mem.Print() // 0x20 range case ADD: require(2) x, y := stack.Popn() self.Printf(" %v + %v", y, x) base.Add(y, x) ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case SUB: require(2) x, y := stack.Popn() self.Printf(" %v - %v", y, x) base.Sub(y, x) ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case MUL: require(2) x, y := stack.Popn() self.Printf(" %v * %v", y, x) base.Mul(y, x) ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case DIV: require(2) x, y := stack.Popn() self.Printf(" %v / %v", y, x) if x.Cmp(ethutil.Big0) != 0 { base.Div(y, x) } ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case SDIV: require(2) x, y := stack.Popn() self.Printf(" %v / %v", y, x) if x.Cmp(ethutil.Big0) != 0 { base.Div(y, x) } ensure256(base) self.Printf(" = %v", base) // Pop result back on the stack stack.Push(base) case MOD: require(2) x, y := stack.Popn() self.Printf(" %v %% %v", y, x) base.Mod(y, x) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case SMOD: require(2) x, y := stack.Popn() self.Printf(" %v %% %v", y, x) base.Mod(y, x) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case EXP: require(2) x, y := stack.Popn() self.Printf(" %v ** %v", y, x) base.Exp(y, x, Pow256) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case NEG: require(1) base.Sub(Pow256, stack.Pop()) stack.Push(base) case LT: require(2) x, y := stack.Popn() self.Printf(" %v < %v", y, x) // x < y if y.Cmp(x) < 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case GT: require(2) x, y := stack.Popn() self.Printf(" %v > %v", y, x) // x > y if y.Cmp(x) > 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case SLT: require(2) x, y := stack.Popn() self.Printf(" %v < %v", y, x) // x < y if y.Cmp(x) < 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case SGT: require(2) x, y := stack.Popn() self.Printf(" %v > %v", y, x) // x > y if y.Cmp(x) > 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case EQ: require(2) x, y := stack.Popn() self.Printf(" %v == %v", y, x) // x == y if x.Cmp(y) == 0 { stack.Push(ethutil.BigTrue) } else { stack.Push(ethutil.BigFalse) } case NOT: require(1) x := stack.Pop() if x.Cmp(ethutil.BigFalse) > 0 { stack.Push(ethutil.BigFalse) } else { stack.Push(ethutil.BigTrue) } // 0x10 range case AND: require(2) x, y := stack.Popn() self.Printf(" %v & %v", y, x) stack.Push(base.And(y, x)) case OR: require(2) x, y := stack.Popn() self.Printf(" %v | %v", y, x) stack.Push(base.Or(y, x)) case XOR: require(2) x, y := stack.Popn() self.Printf(" %v ^ %v", y, x) stack.Push(base.Xor(y, x)) case BYTE: require(2) val, th := stack.Popn() if th.Cmp(big.NewInt(32)) < 0 && th.Cmp(big.NewInt(int64(len(val.Bytes())))) < 0 { byt := big.NewInt(int64(ethutil.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) stack.Push(byt) self.Printf(" => 0x%x", byt.Bytes()) } else { stack.Push(ethutil.BigFalse) } case ADDMOD: require(3) x := stack.Pop() y := stack.Pop() z := stack.Pop() base.Add(x, y) base.Mod(base, z) ensure256(base) self.Printf(" = %v", base) stack.Push(base) case MULMOD: require(3) x := stack.Pop() y := stack.Pop() z := stack.Pop() base.Mul(x, y) base.Mod(base, z) ensure256(base) self.Printf(" = %v", base) stack.Push(base) // 0x20 range case SHA3: require(2) size, offset := stack.Popn() data := ethcrypto.Sha3Bin(mem.Get(offset.Int64(), size.Int64())) stack.Push(ethutil.BigD(data)) self.Printf(" => %x", data) // 0x30 range case ADDRESS: stack.Push(ethutil.BigD(closure.Address())) self.Printf(" => %x", closure.Address()) case BALANCE: require(1) addr := stack.Pop().Bytes() balance := self.env.State().GetBalance(addr) stack.Push(balance) self.Printf(" => %v (%x)", balance, addr) case ORIGIN: origin := self.env.Origin() stack.Push(ethutil.BigD(origin)) self.Printf(" => %x", origin) case CALLER: caller := closure.caller.Address() stack.Push(ethutil.BigD(caller)) self.Printf(" => %x", caller) case CALLVALUE: value := self.env.Value() stack.Push(value) self.Printf(" => %v", value) case CALLDATALOAD: require(1) var ( offset = stack.Pop() data = make([]byte, 32) lenData = big.NewInt(int64(len(closure.Args))) ) if lenData.Cmp(offset) >= 0 { length := new(big.Int).Add(offset, ethutil.Big32) length = ethutil.BigMin(length, lenData) copy(data, closure.Args[offset.Int64():length.Int64()]) } self.Printf(" => 0x%x", data) stack.Push(ethutil.BigD(data)) case CALLDATASIZE: l := int64(len(closure.Args)) stack.Push(big.NewInt(l)) self.Printf(" => %d", l) case CALLDATACOPY: var ( size = int64(len(closure.Args)) mOff = stack.Pop().Int64() cOff = stack.Pop().Int64() l = stack.Pop().Int64() ) if cOff > size { cOff = 0 l = 0 } else if cOff+l > size { l = 0 } code := closure.Args[cOff : cOff+l] mem.Set(mOff, l, code) case CODESIZE: l := big.NewInt(int64(len(closure.Code))) stack.Push(l) self.Printf(" => %d", l) case CODECOPY: var ( size = int64(len(closure.Code)) mOff = stack.Pop().Int64() cOff = stack.Pop().Int64() l = stack.Pop().Int64() ) if cOff > size { cOff = 0 l = 0 } else if cOff+l > size { l = 0 } code := closure.Code[cOff : cOff+l] mem.Set(mOff, l, code) case GASPRICE: stack.Push(closure.Price) self.Printf(" => %v", closure.Price) // 0x40 range case PREVHASH: prevHash := self.env.PrevHash() stack.Push(ethutil.BigD(prevHash)) self.Printf(" => 0x%x", prevHash) case COINBASE: coinbase := self.env.Coinbase() stack.Push(ethutil.BigD(coinbase)) self.Printf(" => 0x%x", coinbase) case TIMESTAMP: time := self.env.Time() stack.Push(big.NewInt(time)) self.Printf(" => 0x%x", time) case NUMBER: number := self.env.BlockNumber() stack.Push(number) self.Printf(" => 0x%x", number.Bytes()) case DIFFICULTY: difficulty := self.env.Difficulty() stack.Push(difficulty) self.Printf(" => 0x%x", difficulty.Bytes()) case GASLIMIT: // TODO stack.Push(big.NewInt(0)) // 0x50 range case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: a := big.NewInt(int64(op) - int64(PUSH1) + 1) pc.Add(pc, ethutil.Big1) data := closure.Gets(pc, a) val := ethutil.BigD(data.Bytes()) // Push value to stack stack.Push(val) pc.Add(pc, a.Sub(a, big.NewInt(1))) step += int(op) - int(PUSH1) + 1 self.Printf(" => 0x%x", data.Bytes()) case POP: require(1) stack.Pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.Dupn(n) self.Printf(" => [%d] 0x%x", n, stack.Peek().Bytes()) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 1) x, y := stack.Swapn(n) self.Printf(" => [%d] %x [0] %x", n, x.Bytes(), y.Bytes()) case MLOAD: require(1) offset := stack.Pop() val := ethutil.BigD(mem.Get(offset.Int64(), 32)) stack.Push(val) self.Printf(" => 0x%x", val.Bytes()) case MSTORE: // Store the value at stack top-1 in to memory at location stack top require(2) // Pop value of the stack val, mStart := stack.Popn() mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(val, 256)) self.Printf(" => 0x%x", val) case MSTORE8: require(2) val, mStart := stack.Popn() //base.And(val, new(big.Int).SetInt64(0xff)) //mem.Set(mStart.Int64(), 32, ethutil.BigToBytes(base, 256)) mem.store[mStart.Int64()] = byte(val.Int64() & 0xff) self.Printf(" => 0x%x", val) case SLOAD: require(1) loc := stack.Pop() val := closure.GetStorage(loc) stack.Push(val.BigInt()) self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes()) case SSTORE: require(2) val, loc := stack.Popn() closure.SetStorage(loc, ethutil.NewValue(val)) closure.message.AddStorageChange(loc.Bytes()) self.Printf(" {0x%x : 0x%x}", loc.Bytes(), val.Bytes()) case JUMP: require(1) pc = stack.Pop() // Reduce pc by one because of the increment that's at the end of this for loop self.Printf(" ~> %v", pc).Endl() continue case JUMPI: require(2) cond, pos := stack.Popn() if cond.Cmp(ethutil.BigTrue) >= 0 { pc = pos self.Printf(" ~> %v (t)", pc).Endl() continue } else { self.Printf(" (f)") } case PC: stack.Push(pc) case MSIZE: stack.Push(big.NewInt(int64(mem.Len()))) case GAS: stack.Push(closure.Gas) // 0x60 range case CREATE: require(3) var ( err error value = stack.Pop() size, offset = stack.Popn() // Snapshot the current stack so we are able to // revert back to it later. snapshot = self.env.State().Copy() ) // Generate a new address addr := ethcrypto.CreateAddress(closure.Address(), closure.object.Nonce) for i := uint64(0); self.env.State().GetStateObject(addr) != nil; i++ { ethcrypto.CreateAddress(closure.Address(), closure.object.Nonce+i) } closure.object.Nonce++ self.Printf(" (*) %x", addr).Endl() msg := self.env.State().Manifest().AddMessage(ðstate.Message{ To: addr, From: closure.Address(), Origin: self.env.Origin(), Block: self.env.BlockHash(), Timestamp: self.env.Time(), Coinbase: self.env.Coinbase(), Number: self.env.BlockNumber(), Value: value, }) // Create a new contract contract := self.env.State().NewStateObject(addr) if contract.Balance.Cmp(value) >= 0 { closure.object.SubAmount(value) contract.AddAmount(value) // Set the init script initCode := mem.Get(offset.Int64(), size.Int64()) msg.Input = initCode // Transfer all remaining gas to the new // contract so it may run the init script gas := new(big.Int).Set(closure.Gas) closure.UseGas(closure.Gas) // Create the closure c := NewClosure(msg, closure, contract, initCode, gas, closure.Price) // Call the closure and set the return value as // main script. contract.Code, _, err = c.Call(self, nil) } else { err = fmt.Errorf("Insufficient funds to transfer value. Req %v, has %v", value, closure.object.Balance) } if err != nil { stack.Push(ethutil.BigFalse) // Revert the state as it was before. self.env.State().Set(snapshot) self.Printf("CREATE err %v", err) } else { stack.Push(ethutil.BigD(addr)) msg.Output = contract.Code } self.Endl() // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } case CALL: require(7) self.Endl() gas := stack.Pop() // Pop gas and value of the stack. value, addr := stack.Popn() // Pop input size and offset inSize, inOffset := stack.Popn() // Pop return size and offset retSize, retOffset := stack.Popn() // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) msg := self.env.State().Manifest().AddMessage(ðstate.Message{ To: addr.Bytes(), From: closure.Address(), Input: args, Origin: self.env.Origin(), Block: self.env.BlockHash(), Timestamp: self.env.Time(), Coinbase: self.env.Coinbase(), Number: self.env.BlockNumber(), Value: value, }) if closure.object.Balance.Cmp(value) < 0 { vmlogger.Debugf("Insufficient funds to transfer value. Req %v, has %v", value, closure.object.Balance) closure.ReturnGas(gas, nil) stack.Push(ethutil.BigFalse) } else { snapshot := self.env.State().Copy() stateObject := self.env.State().GetOrNewStateObject(addr.Bytes()) closure.object.SubAmount(value) stateObject.AddAmount(value) // Create a new callable closure c := NewClosure(msg, closure, stateObject, stateObject.Code, gas, closure.Price) // Executer the closure and get the return value (if any) ret, _, err := c.Call(self, args) if err != nil { stack.Push(ethutil.BigFalse) vmlogger.Debugf("Closure execution failed. %v\n", err) self.env.State().Set(snapshot) } else { stack.Push(ethutil.BigTrue) mem.Set(retOffset.Int64(), retSize.Int64(), ret) } msg.Output = ret // Debug hook if self.Dbg != nil { self.Dbg.SetCode(closure.Code) } } case RETURN: require(2) size, offset := stack.Popn() ret := mem.Get(offset.Int64(), size.Int64()) self.Printf(" => (%d) 0x%x", len(ret), ret).Endl() return closure.Return(ret), nil case SUICIDE: require(1) receiver := self.env.State().GetOrNewStateObject(stack.Pop().Bytes()) receiver.AddAmount(closure.object.Balance) closure.object.MarkForDeletion() fallthrough case STOP: // Stop the closure self.Endl() return closure.Return(nil), nil default: vmlogger.Debugf("(pc) %-3v Invalid opcode %x\n", pc, op) return closure.Return(nil), fmt.Errorf("Invalid opcode %x", op) } pc.Add(pc, ethutil.Big1) self.Endl() if self.Dbg != nil { for _, instrNo := range self.Dbg.BreakPoints() { if pc.Cmp(big.NewInt(instrNo)) == 0 { self.Stepping = true if !self.Dbg.BreakHook(prevStep, op, mem, stack, closure.Object()) { return nil, nil } } else if self.Stepping { if !self.Dbg.StepHook(prevStep, op, mem, stack, closure.Object()) { return nil, nil } } } } } }
// Post-order traversal, equivalent to postfix notation. func Eval(node interface{}) (*big.Int, error) { switch nn := node.(type) { case *ast.BinaryExpr: z := new(big.Int) x, xerr := Eval(nn.X) if xerr != nil { return nil, xerr } y, yerr := Eval(nn.Y) if yerr != nil { return nil, yerr } switch nn.Op { case token.ADD: return z.Add(x, y), nil case token.SUB: return z.Sub(x, y), nil case token.MUL: return z.Mul(x, y), nil case token.QUO: if y.Sign() == 0 { // 0 denominator return nil, DivideByZero } return z.Quo(x, y), nil case token.REM: if y.Sign() == 0 { return nil, DivideByZero } return z.Rem(x, y), nil case token.AND: return z.And(x, y), nil case token.OR: return z.Or(x, y), nil case token.XOR: return z.Xor(x, y), nil case token.SHL: if y.Sign() < 0 { // negative shift return nil, NegativeShift } return z.Lsh(x, uint(y.Int64())), nil case token.SHR: if y.Sign() < 0 { return nil, NegativeShift } return z.Rsh(x, uint(y.Int64())), nil case token.AND_NOT: return z.AndNot(x, y), nil default: return nil, UnknownOpErr } case *ast.UnaryExpr: var z *big.Int var err error if z, err = Eval(nn.X); err != nil { return nil, err } switch nn.Op { case token.SUB: // -x return z.Neg(z), nil case token.XOR: // ^x return z.Not(z), nil case token.ADD: // +x (useless) return z, nil } case *ast.BasicLit: z := new(big.Int) switch nn.Kind { case token.INT: z.SetString(nn.Value, 0) return z, nil default: return nil, UnknownLitErr } case *ast.ParenExpr: z, err := Eval(nn.X) if err != nil { return nil, err } return z, nil case *ast.CallExpr: ident, ok := nn.Fun.(*ast.Ident) if !ok { return nil, UnknownTokenErr // quarter to four am; dunno correct error } var f Func f, ok = FuncMap[ident.Name] if !ok { return nil, UnknownFuncErr } var aerr error args := make([]*big.Int, len(nn.Args)) for i, a := range nn.Args { if args[i], aerr = Eval(a); aerr != nil { return nil, aerr } } x, xerr := f(args...) if xerr != nil { return nil, xerr } return x, nil } return nil, UnknownTokenErr }
func (self *Vm) Run(context *Context, callData []byte) (ret []byte, err error) { self.env.SetDepth(self.env.Depth() + 1) defer self.env.SetDepth(self.env.Depth() - 1) var ( caller = context.caller code = context.Code value = context.value price = context.Price ) self.Printf("(%d) (%x) %x (code=%d) gas: %v (d) %x", self.env.Depth(), caller.Address().Bytes()[:4], context.Address(), len(code), context.Gas, callData).Endl() // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if self.After != nil { self.After(context, err) } if err != nil { self.Printf(" %v", err).Endl() // In case of a VM exception (known exceptions) all gas consumed (panics NOT included). context.UseGas(context.Gas) ret = context.Return(nil) } }() if context.CodeAddr != nil { if p := Precompiled[context.CodeAddr.Str()]; p != nil { return self.RunPrecompiled(p, callData, context) } } var ( op OpCode destinations = analyseJumpDests(context.Code) mem = NewMemory() stack = newStack() pc = new(big.Int) statedb = self.env.State() jump = func(from *big.Int, to *big.Int) error { nop := context.GetOp(to) if !destinations.Has(to) { return fmt.Errorf("invalid jump destination (%v) %v", nop, to) } self.Printf(" ~> %v", to) pc = to self.Endl() return nil } ) // Don't bother with the execution if there's no code. if len(code) == 0 { return context.Return(nil), nil } for { // The base for all big integer arithmetic base := new(big.Int) // Get the memory location of pc op = context.GetOp(pc) self.Printf("(pc) %-3d -o- %-14s (m) %-4d (s) %-4d ", pc, op.String(), mem.Len(), stack.len()) newMemSize, gas, err := self.calculateGasAndSize(context, caller, op, statedb, mem, stack) if err != nil { return nil, err } self.Printf("(g) %-3v (%v)", gas, context.Gas) if !context.UseGas(gas) { self.Endl() tmp := new(big.Int).Set(context.Gas) context.UseGas(context.Gas) return context.Return(nil), OOG(gas, tmp) } mem.Resize(newMemSize.Uint64()) switch op { // 0x20 range case ADD: x, y := stack.pop(), stack.pop() self.Printf(" %v + %v", y, x) base.Add(x, y) U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case SUB: x, y := stack.pop(), stack.pop() self.Printf(" %v - %v", y, x) base.Sub(x, y) U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case MUL: x, y := stack.pop(), stack.pop() self.Printf(" %v * %v", y, x) base.Mul(x, y) U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case DIV: x, y := stack.pop(), stack.pop() self.Printf(" %v / %v", x, y) if y.Cmp(common.Big0) != 0 { base.Div(x, y) } U256(base) self.Printf(" = %v", base) // pop result back on the stack stack.push(base) case SDIV: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v / %v", x, y) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Div(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } self.Printf(" = %v", base) stack.push(base) case MOD: x, y := stack.pop(), stack.pop() self.Printf(" %v %% %v", x, y) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { base.Mod(x, y) } U256(base) self.Printf(" = %v", base) stack.push(base) case SMOD: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v %% %v", x, y) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if x.Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } self.Printf(" = %v", base) stack.push(base) case EXP: x, y := stack.pop(), stack.pop() self.Printf(" %v ** %v", x, y) base.Exp(x, y, Pow256) U256(base) self.Printf(" = %v", base) stack.push(base) case SIGNEXTEND: back := stack.pop() if back.Cmp(big.NewInt(31)) < 0 { bit := uint(back.Uint64()*8 + 7) num := stack.pop() mask := new(big.Int).Lsh(common.Big1, bit) mask.Sub(mask, common.Big1) if common.BitTest(num, int(bit)) { num.Or(num, mask.Not(mask)) } else { num.And(num, mask) } num = U256(num) self.Printf(" = %v", num) stack.push(num) } case NOT: stack.push(U256(new(big.Int).Not(stack.pop()))) //base.Sub(Pow256, stack.pop()).Sub(base, common.Big1) //base = U256(base) //stack.push(base) case LT: x, y := stack.pop(), stack.pop() self.Printf(" %v < %v", x, y) // x < y if x.Cmp(y) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case GT: x, y := stack.pop(), stack.pop() self.Printf(" %v > %v", x, y) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SLT: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v < %v", x, y) // x < y if x.Cmp(S256(y)) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SGT: x, y := S256(stack.pop()), S256(stack.pop()) self.Printf(" %v > %v", x, y) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case EQ: x, y := stack.pop(), stack.pop() self.Printf(" %v == %v", y, x) // x == y if x.Cmp(y) == 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case ISZERO: x := stack.pop() if x.Cmp(common.BigFalse) > 0 { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) } // 0x10 range case AND: x, y := stack.pop(), stack.pop() self.Printf(" %v & %v", y, x) stack.push(base.And(x, y)) case OR: x, y := stack.pop(), stack.pop() self.Printf(" %v | %v", x, y) stack.push(base.Or(x, y)) case XOR: x, y := stack.pop(), stack.pop() self.Printf(" %v ^ %v", x, y) stack.push(base.Xor(x, y)) case BYTE: th, val := stack.pop(), stack.pop() if th.Cmp(big.NewInt(32)) < 0 { byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) base.Set(byt) } else { base.Set(common.BigFalse) } self.Printf(" => 0x%x", base.Bytes()) stack.push(base) case ADDMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { add := new(big.Int).Add(x, y) base.Mod(add, z) base = U256(base) } self.Printf(" %v + %v %% %v = %v", x, y, z, base) stack.push(base) case MULMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { mul := new(big.Int).Mul(x, y) base.Mod(mul, z) U256(base) } self.Printf(" %v + %v %% %v = %v", x, y, z, base) stack.push(base) // 0x20 range case SHA3: offset, size := stack.pop(), stack.pop() data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64())) stack.push(common.BigD(data)) self.Printf(" => (%v) %x", size, data) // 0x30 range case ADDRESS: stack.push(common.Bytes2Big(context.Address().Bytes())) self.Printf(" => %x", context.Address()) case BALANCE: addr := common.BigToAddress(stack.pop()) balance := statedb.GetBalance(addr) stack.push(balance) self.Printf(" => %v (%x)", balance, addr) case ORIGIN: origin := self.env.Origin() stack.push(origin.Big()) self.Printf(" => %x", origin) case CALLER: caller := context.caller.Address() stack.push(common.Bytes2Big(caller.Bytes())) self.Printf(" => %x", caller) case CALLVALUE: stack.push(value) self.Printf(" => %v", value) case CALLDATALOAD: data := getData(callData, stack.pop(), common.Big32) self.Printf(" => 0x%x", data) stack.push(common.Bytes2Big(data)) case CALLDATASIZE: l := int64(len(callData)) stack.push(big.NewInt(l)) self.Printf(" => %d", l) case CALLDATACOPY: var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) data := getData(callData, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), data) self.Printf(" => [%v, %v, %v]", mOff, cOff, l) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODESIZE { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } l := big.NewInt(int64(len(code))) stack.push(l) self.Printf(" => %d", l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) codeCopy := getData(code, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), codeCopy) self.Printf(" => [%v, %v, %v] %x", mOff, cOff, l, codeCopy) case GASPRICE: stack.push(context.Price) self.Printf(" => %x", context.Price) // 0x40 range case BLOCKHASH: num := stack.pop() n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257) if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 { stack.push(self.env.GetHash(num.Uint64()).Big()) } else { stack.push(common.Big0) } self.Printf(" => 0x%x", stack.peek().Bytes()) case COINBASE: coinbase := self.env.Coinbase() stack.push(coinbase.Big()) self.Printf(" => 0x%x", coinbase) case TIMESTAMP: time := self.env.Time() stack.push(big.NewInt(time)) self.Printf(" => 0x%x", time) case NUMBER: number := self.env.BlockNumber() stack.push(U256(number)) self.Printf(" => 0x%x", number.Bytes()) case DIFFICULTY: difficulty := self.env.Difficulty() stack.push(difficulty) self.Printf(" => 0x%x", difficulty.Bytes()) case GASLIMIT: self.Printf(" => %v", self.env.GasLimit()) stack.push(self.env.GasLimit()) // 0x50 range case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: a := big.NewInt(int64(op - PUSH1 + 1)) byts := getData(code, new(big.Int).Add(pc, big.NewInt(1)), a) // push value to stack stack.push(common.Bytes2Big(byts)) pc.Add(pc, a) self.Printf(" => 0x%x", byts) case POP: stack.pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.dup(n) self.Printf(" => [%d] 0x%x", n, stack.peek().Bytes()) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) stack.swap(n) self.Printf(" => [%d]", n) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) topics := make([]common.Hash, n) mStart, mSize := stack.pop(), stack.pop() for i := 0; i < n; i++ { topics[i] = common.BigToHash(stack.pop()) //common.LeftPadBytes(stack.pop().Bytes(), 32) } data := mem.Get(mStart.Int64(), mSize.Int64()) log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64()) //log := &Log{context.Address(), topics, data, self.env.BlockNumber().Uint64()} self.env.AddLog(log) self.Printf(" => %v", log) case MLOAD: offset := stack.pop() val := common.BigD(mem.Get(offset.Int64(), 32)) stack.push(val) self.Printf(" => 0x%x", val.Bytes()) case MSTORE: // Store the value at stack top-1 in to memory at location stack top // pop value of the stack mStart, val := stack.pop(), stack.pop() mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256)) self.Printf(" => 0x%x", val) case MSTORE8: off, val := stack.pop().Int64(), stack.pop().Int64() mem.store[off] = byte(val & 0xff) self.Printf(" => [%v] 0x%x", off, mem.store[off]) case SLOAD: loc := common.BigToHash(stack.pop()) val := common.Bytes2Big(statedb.GetState(context.Address(), loc)) stack.push(val) self.Printf(" {0x%x : 0x%x}", loc, val.Bytes()) case SSTORE: loc := common.BigToHash(stack.pop()) val := stack.pop() statedb.SetState(context.Address(), loc, val) self.Printf(" {0x%x : 0x%x}", loc, val.Bytes()) case JUMP: if err := jump(pc, stack.pop()); err != nil { return nil, err } continue case JUMPI: pos, cond := stack.pop(), stack.pop() if cond.Cmp(common.BigTrue) >= 0 { if err := jump(pc, pos); err != nil { return nil, err } continue } self.Printf(" ~> false") case JUMPDEST: case PC: //stack.push(big.NewInt(int64(pc))) stack.push(pc) case MSIZE: stack.push(big.NewInt(int64(mem.Len()))) case GAS: stack.push(context.Gas) self.Printf(" => %x", context.Gas) // 0x60 range case CREATE: var ( value = stack.pop() offset, size = stack.pop(), stack.pop() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(context.Gas) addr common.Address ) self.Endl() context.UseGas(context.Gas) ret, suberr, ref := self.env.Create(context, input, gas, price, value) if suberr != nil { stack.push(common.BigFalse) self.Printf(" (*) 0x0 %v", suberr) } else { // gas < len(ret) * CreateDataGas == NO_CODE dataGas := big.NewInt(int64(len(ret))) dataGas.Mul(dataGas, params.CreateDataGas) if context.UseGas(dataGas) { ref.SetCode(ret) } addr = ref.Address() stack.push(addr.Big()) } case CALL, CALLCODE: gas := stack.pop() // pop gas and value of the stack. addr, value := stack.pop(), stack.pop() value = U256(value) // pop input size and offset inOffset, inSize := stack.pop(), stack.pop() // pop return size and offset retOffset, retSize := stack.pop(), stack.pop() address := common.BigToAddress(addr) self.Printf(" => %x", address).Endl() // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) if len(value.Bytes()) > 0 { gas.Add(gas, params.CallStipend) } var ( ret []byte err error ) if op == CALLCODE { ret, err = self.env.CallCode(context, address, args, gas, price, value) } else { ret, err = self.env.Call(context, address, args, gas, price, value) } if err != nil { stack.push(common.BigFalse) self.Printf("%v").Endl() } else { stack.push(common.BigTrue) mem.Set(retOffset.Uint64(), retSize.Uint64(), ret) } self.Printf("resume %x (%v)", context.Address(), context.Gas) case RETURN: offset, size := stack.pop(), stack.pop() ret := mem.Get(offset.Int64(), size.Int64()) self.Printf(" => [%v, %v] (%d) 0x%x", offset, size, len(ret), ret).Endl() return context.Return(ret), nil case SUICIDE: receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop())) balance := statedb.GetBalance(context.Address()) self.Printf(" => (%x) %v", receiver.Address().Bytes()[:4], balance) receiver.AddBalance(balance) statedb.Delete(context.Address()) fallthrough case STOP: // Stop the context self.Endl() return context.Return(nil), nil default: self.Printf("(pc) %-3v Invalid opcode %x\n", pc, op).Endl() return nil, fmt.Errorf("Invalid opcode %x", op) } pc.Add(pc, One) self.Endl() } }
// Run loops and evaluates the contract's code with the given input data func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) { self.env.SetDepth(self.env.Depth() + 1) defer self.env.SetDepth(self.env.Depth() - 1) // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil { // In case of a VM exception (known exceptions) all gas consumed (panics NOT included). context.UseGas(context.Gas) ret = context.Return(nil) } }() if context.CodeAddr != nil { if p := Precompiled[context.CodeAddr.Str()]; p != nil { return self.RunPrecompiled(p, input, context) } } var ( codehash = crypto.Sha3Hash(context.Code) // codehash is used when doing jump dest caching program *Program ) if EnableJit { // Fetch program status. // * If ready run using JIT // * If unknown, compile in a seperate goroutine // * If forced wait for compilation and run once done if status := GetProgramStatus(codehash); status == progReady { return RunProgram(GetProgram(codehash), self.env, context, input) } else if status == progUnknown { if ForceJit { // Create and compile program program = NewProgram(context.Code) perr := CompileProgram(program) if perr == nil { return RunProgram(program, self.env, context, input) } glog.V(logger.Info).Infoln("error compiling program", err) } else { // create and compile the program. Compilation // is done in a seperate goroutine program = NewProgram(context.Code) go func() { err := CompileProgram(program) if err != nil { glog.V(logger.Info).Infoln("error compiling program", err) return } }() } } } var ( caller = context.caller code = context.Code value = context.value price = context.Price op OpCode // current opcode mem = NewMemory() // bound memory stack = newstack() // local stack statedb = self.env.State() // current state // For optimisation reason we're using uint64 as the program counter. // It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Pratically much less so feasible. pc = uint64(0) // program counter // jump evaluates and checks whether the given jump destination is a valid one // if valid move the `pc` otherwise return an error. jump = func(from uint64, to *big.Int) error { if !context.jumpdests.has(codehash, code, to) { nop := context.GetOp(to.Uint64()) return fmt.Errorf("invalid jump destination (%v) %v", nop, to) } pc = to.Uint64() return nil } newMemSize *big.Int cost *big.Int ) // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if err != nil { self.log(pc, op, context.Gas, cost, mem, stack, context, err) } }() // Don't bother with the execution if there's no code. if len(code) == 0 { return context.Return(nil), nil } for { // Overhead of the atomic read might not be worth it /* TODO this still causes a few issues in the tests if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady { // move execution glog.V(logger.Info).Infoln("Moved execution to JIT") return runProgram(program, pc, mem, stack, self.env, context, input) } */ // The base for all big integer arithmetic base := new(big.Int) // Get the memory location of pc op = context.GetOp(pc) // calculate the new memory size and gas price for the current executing opcode newMemSize, cost, err = calculateGasAndSize(self.env, context, caller, op, statedb, mem, stack) if err != nil { return nil, err } // Use the calculated gas. When insufficient gas is present, use all gas and return an // Out Of Gas error if !context.UseGas(cost) { return nil, OutOfGasError } // Resize the memory calculated previously mem.Resize(newMemSize.Uint64()) // Add a log message self.log(pc, op, context.Gas, cost, mem, stack, context, nil) switch op { case ADD: x, y := stack.pop(), stack.pop() base.Add(x, y) U256(base) // pop result back on the stack stack.push(base) case SUB: x, y := stack.pop(), stack.pop() base.Sub(x, y) U256(base) // pop result back on the stack stack.push(base) case MUL: x, y := stack.pop(), stack.pop() base.Mul(x, y) U256(base) // pop result back on the stack stack.push(base) case DIV: x, y := stack.pop(), stack.pop() if y.Cmp(common.Big0) != 0 { base.Div(x, y) } U256(base) // pop result back on the stack stack.push(base) case SDIV: x, y := S256(stack.pop()), S256(stack.pop()) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Div(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } stack.push(base) case MOD: x, y := stack.pop(), stack.pop() if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { base.Mod(x, y) } U256(base) stack.push(base) case SMOD: x, y := S256(stack.pop()), S256(stack.pop()) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if x.Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } stack.push(base) case EXP: x, y := stack.pop(), stack.pop() base.Exp(x, y, Pow256) U256(base) stack.push(base) case SIGNEXTEND: back := stack.pop() if back.Cmp(big.NewInt(31)) < 0 { bit := uint(back.Uint64()*8 + 7) num := stack.pop() mask := new(big.Int).Lsh(common.Big1, bit) mask.Sub(mask, common.Big1) if common.BitTest(num, int(bit)) { num.Or(num, mask.Not(mask)) } else { num.And(num, mask) } num = U256(num) stack.push(num) } case NOT: stack.push(U256(new(big.Int).Not(stack.pop()))) case LT: x, y := stack.pop(), stack.pop() // x < y if x.Cmp(y) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case GT: x, y := stack.pop(), stack.pop() // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SLT: x, y := S256(stack.pop()), S256(stack.pop()) // x < y if x.Cmp(S256(y)) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SGT: x, y := S256(stack.pop()), S256(stack.pop()) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case EQ: x, y := stack.pop(), stack.pop() // x == y if x.Cmp(y) == 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case ISZERO: x := stack.pop() if x.Cmp(common.BigFalse) > 0 { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) } case AND: x, y := stack.pop(), stack.pop() stack.push(base.And(x, y)) case OR: x, y := stack.pop(), stack.pop() stack.push(base.Or(x, y)) case XOR: x, y := stack.pop(), stack.pop() stack.push(base.Xor(x, y)) case BYTE: th, val := stack.pop(), stack.pop() if th.Cmp(big.NewInt(32)) < 0 { byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) base.Set(byt) } else { base.Set(common.BigFalse) } stack.push(base) case ADDMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { add := new(big.Int).Add(x, y) base.Mod(add, z) base = U256(base) } stack.push(base) case MULMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { mul := new(big.Int).Mul(x, y) base.Mod(mul, z) U256(base) } stack.push(base) case SHA3: offset, size := stack.pop(), stack.pop() data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64())) stack.push(common.BigD(data)) case ADDRESS: stack.push(common.Bytes2Big(context.Address().Bytes())) case BALANCE: addr := common.BigToAddress(stack.pop()) balance := statedb.GetBalance(addr) stack.push(new(big.Int).Set(balance)) case ORIGIN: origin := self.env.Origin() stack.push(origin.Big()) case CALLER: caller := context.caller.Address() stack.push(common.Bytes2Big(caller.Bytes())) case CALLVALUE: stack.push(new(big.Int).Set(value)) case CALLDATALOAD: data := getData(input, stack.pop(), common.Big32) stack.push(common.Bytes2Big(data)) case CALLDATASIZE: l := int64(len(input)) stack.push(big.NewInt(l)) case CALLDATACOPY: var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) data := getData(input, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), data) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODESIZE { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } l := big.NewInt(int64(len(code))) stack.push(l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) codeCopy := getData(code, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), codeCopy) case GASPRICE: stack.push(new(big.Int).Set(context.Price)) case BLOCKHASH: num := stack.pop() n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257) if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 { stack.push(self.env.GetHash(num.Uint64()).Big()) } else { stack.push(common.Big0) } case COINBASE: coinbase := self.env.Coinbase() stack.push(coinbase.Big()) case TIMESTAMP: time := self.env.Time() stack.push(new(big.Int).Set(time)) case NUMBER: number := self.env.BlockNumber() stack.push(U256(number)) case DIFFICULTY: difficulty := self.env.Difficulty() stack.push(new(big.Int).Set(difficulty)) case GASLIMIT: stack.push(new(big.Int).Set(self.env.GasLimit())) case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: size := uint64(op - PUSH1 + 1) byts := getData(code, new(big.Int).SetUint64(pc+1), new(big.Int).SetUint64(size)) // push value to stack stack.push(common.Bytes2Big(byts)) pc += size case POP: stack.pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.dup(n) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) stack.swap(n) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) topics := make([]common.Hash, n) mStart, mSize := stack.pop(), stack.pop() for i := 0; i < n; i++ { topics[i] = common.BigToHash(stack.pop()) } data := mem.Get(mStart.Int64(), mSize.Int64()) log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64()) self.env.AddLog(log) case MLOAD: offset := stack.pop() val := common.BigD(mem.Get(offset.Int64(), 32)) stack.push(val) case MSTORE: // pop value of the stack mStart, val := stack.pop(), stack.pop() mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256)) case MSTORE8: off, val := stack.pop().Int64(), stack.pop().Int64() mem.store[off] = byte(val & 0xff) case SLOAD: loc := common.BigToHash(stack.pop()) val := statedb.GetState(context.Address(), loc).Big() stack.push(val) case SSTORE: loc := common.BigToHash(stack.pop()) val := stack.pop() statedb.SetState(context.Address(), loc, common.BigToHash(val)) case JUMP: if err := jump(pc, stack.pop()); err != nil { return nil, err } continue case JUMPI: pos, cond := stack.pop(), stack.pop() if cond.Cmp(common.BigTrue) >= 0 { if err := jump(pc, pos); err != nil { return nil, err } continue } case JUMPDEST: case PC: stack.push(new(big.Int).SetUint64(pc)) case MSIZE: stack.push(big.NewInt(int64(mem.Len()))) case GAS: stack.push(new(big.Int).Set(context.Gas)) case CREATE: var ( value = stack.pop() offset, size = stack.pop(), stack.pop() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(context.Gas) addr common.Address ) context.UseGas(context.Gas) ret, suberr, ref := self.env.Create(context, input, gas, price, value) if suberr != nil { stack.push(common.BigFalse) } else { // gas < len(ret) * CreateDataGas == NO_CODE dataGas := big.NewInt(int64(len(ret))) dataGas.Mul(dataGas, params.CreateDataGas) if context.UseGas(dataGas) { ref.SetCode(ret) } addr = ref.Address() stack.push(addr.Big()) } case CALL, CALLCODE: gas := stack.pop() // pop gas and value of the stack. addr, value := stack.pop(), stack.pop() value = U256(value) // pop input size and offset inOffset, inSize := stack.pop(), stack.pop() // pop return size and offset retOffset, retSize := stack.pop(), stack.pop() address := common.BigToAddress(addr) // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) if len(value.Bytes()) > 0 { gas.Add(gas, params.CallStipend) } var ( ret []byte err error ) if op == CALLCODE { ret, err = self.env.CallCode(context, address, args, gas, price, value) } else { ret, err = self.env.Call(context, address, args, gas, price, value) } if err != nil { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) mem.Set(retOffset.Uint64(), retSize.Uint64(), ret) } case RETURN: offset, size := stack.pop(), stack.pop() ret := mem.GetPtr(offset.Int64(), size.Int64()) return context.Return(ret), nil case SUICIDE: receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop())) balance := statedb.GetBalance(context.Address()) receiver.AddBalance(balance) statedb.Delete(context.Address()) fallthrough case STOP: // Stop the context return context.Return(nil), nil default: return nil, fmt.Errorf("Invalid opcode %x", op) } pc++ } }
func or(z *big.Int, x *big.Int, y *big.Int) *big.Int { return z.Or(x, y) }
// binaryOpConst returns the result of the constant evaluation x op y; // both operands must be of the same "kind" (boolean, numeric, or string). // If intDiv is true, division (op == token.QUO) is using integer division // (and the result is guaranteed to be integer) rather than floating-point // division. Division by zero leads to a run-time panic. // func binaryOpConst(x, y interface{}, op token.Token, intDiv bool) interface{} { x, y = matchConst(x, y) switch x := x.(type) { case bool: y := y.(bool) switch op { case token.LAND: return x && y case token.LOR: return x || y default: unreachable() } case int64: y := y.(int64) switch op { case token.ADD: // TODO(gri) can do better than this if is63bit(x) && is63bit(y) { return x + y } return normalizeIntConst(new(big.Int).Add(big.NewInt(x), big.NewInt(y))) case token.SUB: // TODO(gri) can do better than this if is63bit(x) && is63bit(y) { return x - y } return normalizeIntConst(new(big.Int).Sub(big.NewInt(x), big.NewInt(y))) case token.MUL: // TODO(gri) can do better than this if is32bit(x) && is32bit(y) { return x * y } return normalizeIntConst(new(big.Int).Mul(big.NewInt(x), big.NewInt(y))) case token.REM: return x % y case token.QUO: if intDiv { return x / y } return normalizeRatConst(new(big.Rat).SetFrac(big.NewInt(x), big.NewInt(y))) case token.AND: return x & y case token.OR: return x | y case token.XOR: return x ^ y case token.AND_NOT: return x &^ y default: unreachable() } case *big.Int: y := y.(*big.Int) var z big.Int switch op { case token.ADD: z.Add(x, y) case token.SUB: z.Sub(x, y) case token.MUL: z.Mul(x, y) case token.REM: z.Rem(x, y) case token.QUO: if intDiv { z.Quo(x, y) } else { return normalizeRatConst(new(big.Rat).SetFrac(x, y)) } case token.AND: z.And(x, y) case token.OR: z.Or(x, y) case token.XOR: z.Xor(x, y) case token.AND_NOT: z.AndNot(x, y) default: unreachable() } return normalizeIntConst(&z) case *big.Rat: y := y.(*big.Rat) var z big.Rat switch op { case token.ADD: z.Add(x, y) case token.SUB: z.Sub(x, y) case token.MUL: z.Mul(x, y) case token.QUO: z.Quo(x, y) default: unreachable() } return normalizeRatConst(&z) case complex: y := y.(complex) a, b := x.re, x.im c, d := y.re, y.im var re, im big.Rat switch op { case token.ADD: // (a+c) + i(b+d) re.Add(a, c) im.Add(b, d) case token.SUB: // (a-c) + i(b-d) re.Sub(a, c) im.Sub(b, d) case token.MUL: // (ac-bd) + i(bc+ad) var ac, bd, bc, ad big.Rat ac.Mul(a, c) bd.Mul(b, d) bc.Mul(b, c) ad.Mul(a, d) re.Sub(&ac, &bd) im.Add(&bc, &ad) case token.QUO: // (ac+bd)/s + i(bc-ad)/s, with s = cc + dd var ac, bd, bc, ad, s big.Rat ac.Mul(a, c) bd.Mul(b, d) bc.Mul(b, c) ad.Mul(a, d) s.Add(c.Mul(c, c), d.Mul(d, d)) re.Add(&ac, &bd) re.Quo(&re, &s) im.Sub(&bc, &ad) im.Quo(&im, &s) default: unreachable() } return normalizeComplexConst(complex{&re, &im}) case string: if op == token.ADD { return x + y.(string) } } unreachable() return nil }
// Just like Call() but does not transfer 'value' or modify the callDepth. func (vm *VM) call(caller, callee *Account, code, input []byte, value int64, gas *int64) (output []byte, err error) { dbg.Printf("(%d) (%X) %X (code=%d) gas: %v (d) %X\n", vm.callDepth, caller.Address[:4], callee.Address, len(callee.Code), *gas, input) var ( pc int64 = 0 stack = NewStack(dataStackCapacity, gas, &err) memory = make([]byte, memoryCapacity) ) for { // Use BaseOp gas. if useGasNegative(gas, GasBaseOp, &err) { return nil, err } var op = codeGetOp(code, pc) dbg.Printf("(pc) %-3d (op) %-14s (st) %-4d ", pc, op.String(), stack.Len()) switch op { case ADD: // 0x01 x, y := stack.Pop(), stack.Pop() xb := new(big.Int).SetBytes(x[:]) yb := new(big.Int).SetBytes(y[:]) sum := new(big.Int).Add(xb, yb) res := LeftPadWord256(U256(sum).Bytes()) stack.Push(res) dbg.Printf(" %v + %v = %v (%X)\n", xb, yb, sum, res) case MUL: // 0x02 x, y := stack.Pop(), stack.Pop() xb := new(big.Int).SetBytes(x[:]) yb := new(big.Int).SetBytes(y[:]) prod := new(big.Int).Mul(xb, yb) res := LeftPadWord256(U256(prod).Bytes()) stack.Push(res) dbg.Printf(" %v * %v = %v (%X)\n", xb, yb, prod, res) case SUB: // 0x03 x, y := stack.Pop(), stack.Pop() xb := new(big.Int).SetBytes(x[:]) yb := new(big.Int).SetBytes(y[:]) diff := new(big.Int).Sub(xb, yb) res := LeftPadWord256(U256(diff).Bytes()) stack.Push(res) dbg.Printf(" %v - %v = %v (%X)\n", xb, yb, diff, res) case DIV: // 0x04 x, y := stack.Pop(), stack.Pop() if y.IsZero() { stack.Push(Zero256) dbg.Printf(" %x / %x = %v\n", x, y, 0) } else { xb := new(big.Int).SetBytes(x[:]) yb := new(big.Int).SetBytes(y[:]) div := new(big.Int).Div(xb, yb) res := LeftPadWord256(U256(div).Bytes()) stack.Push(res) dbg.Printf(" %v / %v = %v (%X)\n", xb, yb, div, res) } case SDIV: // 0x05 x, y := stack.Pop(), stack.Pop() if y.IsZero() { stack.Push(Zero256) dbg.Printf(" %x / %x = %v\n", x, y, 0) } else { xb := S256(new(big.Int).SetBytes(x[:])) yb := S256(new(big.Int).SetBytes(y[:])) div := new(big.Int).Div(xb, yb) res := LeftPadWord256(U256(div).Bytes()) stack.Push(res) dbg.Printf(" %v / %v = %v (%X)\n", xb, yb, div, res) } case MOD: // 0x06 x, y := stack.Pop(), stack.Pop() if y.IsZero() { stack.Push(Zero256) dbg.Printf(" %v %% %v = %v\n", x, y, 0) } else { xb := new(big.Int).SetBytes(x[:]) yb := new(big.Int).SetBytes(y[:]) mod := new(big.Int).Mod(xb, yb) res := LeftPadWord256(U256(mod).Bytes()) stack.Push(res) dbg.Printf(" %v %% %v = %v (%X)\n", xb, yb, mod, res) } case SMOD: // 0x07 x, y := stack.Pop(), stack.Pop() if y.IsZero() { stack.Push(Zero256) dbg.Printf(" %v %% %v = %v\n", x, y, 0) } else { xb := S256(new(big.Int).SetBytes(x[:])) yb := S256(new(big.Int).SetBytes(y[:])) mod := new(big.Int).Mod(xb, yb) res := LeftPadWord256(U256(mod).Bytes()) stack.Push(res) dbg.Printf(" %v %% %v = %v (%X)\n", xb, yb, mod, res) } case ADDMOD: // 0x08 x, y, z := stack.Pop(), stack.Pop(), stack.Pop() if z.IsZero() { stack.Push(Zero256) dbg.Printf(" %v %% %v = %v\n", x, y, 0) } else { xb := new(big.Int).SetBytes(x[:]) yb := new(big.Int).SetBytes(y[:]) zb := new(big.Int).SetBytes(z[:]) add := new(big.Int).Add(xb, yb) mod := new(big.Int).Mod(add, zb) res := LeftPadWord256(U256(mod).Bytes()) stack.Push(res) dbg.Printf(" %v + %v %% %v = %v (%X)\n", xb, yb, zb, mod, res) } case MULMOD: // 0x09 x, y, z := stack.Pop(), stack.Pop(), stack.Pop() if z.IsZero() { stack.Push(Zero256) dbg.Printf(" %v %% %v = %v\n", x, y, 0) } else { xb := new(big.Int).SetBytes(x[:]) yb := new(big.Int).SetBytes(y[:]) zb := new(big.Int).SetBytes(z[:]) mul := new(big.Int).Mul(xb, yb) mod := new(big.Int).Mod(mul, zb) res := LeftPadWord256(U256(mod).Bytes()) stack.Push(res) dbg.Printf(" %v * %v %% %v = %v (%X)\n", xb, yb, zb, mod, res) } case EXP: // 0x0A x, y := stack.Pop(), stack.Pop() xb := new(big.Int).SetBytes(x[:]) yb := new(big.Int).SetBytes(y[:]) pow := new(big.Int).Exp(xb, yb, big.NewInt(0)) res := LeftPadWord256(U256(pow).Bytes()) stack.Push(res) dbg.Printf(" %v ** %v = %v (%X)\n", xb, yb, pow, res) case SIGNEXTEND: // 0x0B back := stack.Pop() backb := new(big.Int).SetBytes(back[:]) if backb.Cmp(big.NewInt(31)) < 0 { bit := uint(backb.Uint64()*8 + 7) num := stack.Pop() numb := new(big.Int).SetBytes(num[:]) mask := new(big.Int).Lsh(big.NewInt(1), bit) mask.Sub(mask, big.NewInt(1)) if numb.Bit(int(bit)) == 1 { numb.Or(numb, mask.Not(mask)) } else { numb.Add(numb, mask) } res := LeftPadWord256(U256(numb).Bytes()) dbg.Printf(" = %v (%X)", numb, res) stack.Push(res) } case LT: // 0x10 x, y := stack.Pop(), stack.Pop() xb := new(big.Int).SetBytes(x[:]) yb := new(big.Int).SetBytes(y[:]) if xb.Cmp(yb) < 0 { stack.Push64(1) dbg.Printf(" %v < %v = %v\n", xb, yb, 1) } else { stack.Push(Zero256) dbg.Printf(" %v < %v = %v\n", xb, yb, 0) } case GT: // 0x11 x, y := stack.Pop(), stack.Pop() xb := new(big.Int).SetBytes(x[:]) yb := new(big.Int).SetBytes(y[:]) if xb.Cmp(yb) > 0 { stack.Push64(1) dbg.Printf(" %v > %v = %v\n", xb, yb, 1) } else { stack.Push(Zero256) dbg.Printf(" %v > %v = %v\n", xb, yb, 0) } case SLT: // 0x12 x, y := stack.Pop(), stack.Pop() xb := S256(new(big.Int).SetBytes(x[:])) yb := S256(new(big.Int).SetBytes(y[:])) if xb.Cmp(yb) < 0 { stack.Push64(1) dbg.Printf(" %v < %v = %v\n", xb, yb, 1) } else { stack.Push(Zero256) dbg.Printf(" %v < %v = %v\n", xb, yb, 0) } case SGT: // 0x13 x, y := stack.Pop(), stack.Pop() xb := S256(new(big.Int).SetBytes(x[:])) yb := S256(new(big.Int).SetBytes(y[:])) if xb.Cmp(yb) > 0 { stack.Push64(1) dbg.Printf(" %v > %v = %v\n", xb, yb, 1) } else { stack.Push(Zero256) dbg.Printf(" %v > %v = %v\n", xb, yb, 0) } case EQ: // 0x14 x, y := stack.Pop(), stack.Pop() if bytes.Equal(x[:], y[:]) { stack.Push64(1) dbg.Printf(" %X == %X = %v\n", x, y, 1) } else { stack.Push(Zero256) dbg.Printf(" %X == %X = %v\n", x, y, 0) } case ISZERO: // 0x15 x := stack.Pop() if x.IsZero() { stack.Push64(1) dbg.Printf(" %v == 0 = %v\n", x, 1) } else { stack.Push(Zero256) dbg.Printf(" %v == 0 = %v\n", x, 0) } case AND: // 0x16 x, y := stack.Pop(), stack.Pop() z := [32]byte{} for i := 0; i < 32; i++ { z[i] = x[i] & y[i] } stack.Push(z) dbg.Printf(" %X & %X = %X\n", x, y, z) case OR: // 0x17 x, y := stack.Pop(), stack.Pop() z := [32]byte{} for i := 0; i < 32; i++ { z[i] = x[i] | y[i] } stack.Push(z) dbg.Printf(" %X | %X = %X\n", x, y, z) case XOR: // 0x18 x, y := stack.Pop(), stack.Pop() z := [32]byte{} for i := 0; i < 32; i++ { z[i] = x[i] ^ y[i] } stack.Push(z) dbg.Printf(" %X ^ %X = %X\n", x, y, z) case NOT: // 0x19 x := stack.Pop() z := [32]byte{} for i := 0; i < 32; i++ { z[i] = ^x[i] } stack.Push(z) dbg.Printf(" !%X = %X\n", x, z) case BYTE: // 0x1A idx, val := stack.Pop64(), stack.Pop() res := byte(0) if idx < 32 { res = val[idx] } stack.Push64(int64(res)) dbg.Printf(" => 0x%X\n", res) case SHA3: // 0x20 if useGasNegative(gas, GasSha3, &err) { return nil, err } offset, size := stack.Pop64(), stack.Pop64() data, ok := subslice(memory, offset, size) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } data = sha3.Sha3(data) stack.PushBytes(data) dbg.Printf(" => (%v) %X\n", size, data) case ADDRESS: // 0x30 stack.Push(callee.Address) dbg.Printf(" => %X\n", callee.Address) case BALANCE: // 0x31 addr := stack.Pop() if useGasNegative(gas, GasGetAccount, &err) { return nil, err } acc := vm.appState.GetAccount(addr) if acc == nil { return nil, firstErr(err, ErrUnknownAddress) } balance := acc.Balance stack.Push64(balance) dbg.Printf(" => %v (%X)\n", balance, addr) case ORIGIN: // 0x32 stack.Push(vm.origin) dbg.Printf(" => %X\n", vm.origin) case CALLER: // 0x33 stack.Push(caller.Address) dbg.Printf(" => %X\n", caller.Address) case CALLVALUE: // 0x34 stack.Push64(value) dbg.Printf(" => %v\n", value) case CALLDATALOAD: // 0x35 offset := stack.Pop64() data, ok := subslice(input, offset, 32) if !ok { return nil, firstErr(err, ErrInputOutOfBounds) } res := LeftPadWord256(data) stack.Push(res) dbg.Printf(" => 0x%X\n", res) case CALLDATASIZE: // 0x36 stack.Push64(int64(len(input))) dbg.Printf(" => %d\n", len(input)) case CALLDATACOPY: // 0x37 memOff := stack.Pop64() inputOff := stack.Pop64() length := stack.Pop64() data, ok := subslice(input, inputOff, length) if !ok { return nil, firstErr(err, ErrInputOutOfBounds) } dest, ok := subslice(memory, memOff, length) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } copy(dest, data) dbg.Printf(" => [%v, %v, %v] %X\n", memOff, inputOff, length, data) case CODESIZE: // 0x38 l := int64(len(code)) stack.Push64(l) dbg.Printf(" => %d\n", l) case CODECOPY: // 0x39 memOff := stack.Pop64() codeOff := stack.Pop64() length := stack.Pop64() data, ok := subslice(code, codeOff, length) if !ok { return nil, firstErr(err, ErrCodeOutOfBounds) } dest, ok := subslice(memory, memOff, length) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } copy(dest, data) dbg.Printf(" => [%v, %v, %v] %X\n", memOff, codeOff, length, data) case GASPRICE_DEPRECATED: // 0x3A stack.Push(Zero256) dbg.Printf(" => %X (GASPRICE IS DEPRECATED)\n") case EXTCODESIZE: // 0x3B addr := stack.Pop() if useGasNegative(gas, GasGetAccount, &err) { return nil, err } acc := vm.appState.GetAccount(addr) if acc == nil { return nil, firstErr(err, ErrUnknownAddress) } code := acc.Code l := int64(len(code)) stack.Push64(l) dbg.Printf(" => %d\n", l) case EXTCODECOPY: // 0x3C addr := stack.Pop() if useGasNegative(gas, GasGetAccount, &err) { return nil, err } acc := vm.appState.GetAccount(addr) if acc == nil { return nil, firstErr(err, ErrUnknownAddress) } code := acc.Code memOff := stack.Pop64() codeOff := stack.Pop64() length := stack.Pop64() data, ok := subslice(code, codeOff, length) if !ok { return nil, firstErr(err, ErrCodeOutOfBounds) } dest, ok := subslice(memory, memOff, length) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } copy(dest, data) dbg.Printf(" => [%v, %v, %v] %X\n", memOff, codeOff, length, data) case BLOCKHASH: // 0x40 stack.Push(Zero256) dbg.Printf(" => 0x%X (NOT SUPPORTED)\n", stack.Peek().Bytes()) case COINBASE: // 0x41 stack.Push(Zero256) dbg.Printf(" => 0x%X (NOT SUPPORTED)\n", stack.Peek().Bytes()) case TIMESTAMP: // 0x42 time := vm.params.BlockTime stack.Push64(int64(time)) dbg.Printf(" => 0x%X\n", time) case BLOCKHEIGHT: // 0x43 number := int64(vm.params.BlockHeight) stack.Push64(number) dbg.Printf(" => 0x%X\n", number) case GASLIMIT: // 0x45 stack.Push64(vm.params.GasLimit) dbg.Printf(" => %v\n", vm.params.GasLimit) case POP: // 0x50 popped := stack.Pop() dbg.Printf(" => 0x%X\n", popped) case MLOAD: // 0x51 offset := stack.Pop64() data, ok := subslice(memory, offset, 32) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } stack.Push(LeftPadWord256(data)) dbg.Printf(" => 0x%X\n", data) case MSTORE: // 0x52 offset, data := stack.Pop64(), stack.Pop() dest, ok := subslice(memory, offset, 32) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } copy(dest, data[:]) dbg.Printf(" => 0x%X\n", data) case MSTORE8: // 0x53 offset, val := stack.Pop64(), byte(stack.Pop64()&0xFF) if len(memory) <= int(offset) { return nil, firstErr(err, ErrMemoryOutOfBounds) } memory[offset] = val dbg.Printf(" => [%v] 0x%X\n", offset, val) case SLOAD: // 0x54 loc := stack.Pop() data := vm.appState.GetStorage(callee.Address, loc) stack.Push(data) dbg.Printf(" {0x%X : 0x%X}\n", loc, data) case SSTORE: // 0x55 loc, data := stack.Pop(), stack.Pop() if useGasNegative(gas, GasStorageUpdate, &err) { return nil, err } vm.appState.SetStorage(callee.Address, loc, data) dbg.Printf(" {0x%X : 0x%X}\n", loc, data) case JUMP: // 0x56 err = jump(code, stack.Pop64(), &pc) continue case JUMPI: // 0x57 pos, cond := stack.Pop64(), stack.Pop() if !cond.IsZero() { err = jump(code, pos, &pc) continue } dbg.Printf(" ~> false\n") case PC: // 0x58 stack.Push64(pc) case MSIZE: // 0x59 stack.Push64(int64(len(memory))) case GAS: // 0x5A stack.Push64(*gas) dbg.Printf(" => %X\n", *gas) case JUMPDEST: // 0x5B dbg.Printf("\n") // Do nothing case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: a := int64(op - PUSH1 + 1) codeSegment, ok := subslice(code, pc+1, a) if !ok { return nil, firstErr(err, ErrCodeOutOfBounds) } res := LeftPadWord256(codeSegment) stack.Push(res) pc += a dbg.Printf(" => 0x%X\n", res) //stack.Print(10) case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.Dup(n) dbg.Printf(" => [%d] 0x%X\n", n, stack.Peek().Bytes()) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) stack.Swap(n) dbg.Printf(" => [%d] %X\n", n, stack.Peek()) //stack.Print(10) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) topics := make([]Word256, n) offset, size := stack.Pop64(), stack.Pop64() for i := 0; i < n; i++ { topics[i] = stack.Pop() } data, ok := subslice(memory, offset, size) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } data = copyslice(data) if vm.evc != nil { eventID := types.EventStringLogEvent(callee.Address.Postfix(20)) fmt.Printf("eventID: %s\n", eventID) log := types.EventDataLog{ callee.Address, topics, data, vm.params.BlockHeight, } vm.evc.FireEvent(eventID, log) } dbg.Printf(" => T:%X D:%X\n", topics, data) case CREATE: // 0xF0 if !HasPermission(vm.appState, callee, ptypes.CreateContract) { return nil, ErrPermission{"create_contract"} } contractValue := stack.Pop64() offset, size := stack.Pop64(), stack.Pop64() input, ok := subslice(memory, offset, size) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } // Check balance if callee.Balance < contractValue { return nil, firstErr(err, ErrInsufficientBalance) } // TODO charge for gas to create account _ the code length * GasCreateByte newAccount := vm.appState.CreateAccount(callee) // Run the input to get the contract code. // NOTE: no need to copy 'input' as per Call contract. ret, err_ := vm.Call(callee, newAccount, input, input, contractValue, gas) if err_ != nil { stack.Push(Zero256) } else { newAccount.Code = ret // Set the code (ret need not be copied as per Call contract) stack.Push(newAccount.Address) } case CALL, CALLCODE: // 0xF1, 0xF2 if !HasPermission(vm.appState, callee, ptypes.Call) { return nil, ErrPermission{"call"} } gasLimit := stack.Pop64() addr, value := stack.Pop(), stack.Pop64() inOffset, inSize := stack.Pop64(), stack.Pop64() // inputs retOffset, retSize := stack.Pop64(), stack.Pop64() // outputs dbg.Printf(" => %X\n", addr) // Get the arguments from the memory args, ok := subslice(memory, inOffset, inSize) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } args = copyslice(args) // Ensure that gasLimit is reasonable if *gas < gasLimit { return nil, firstErr(err, ErrInsufficientGas) } else { *gas -= gasLimit // NOTE: we will return any used gas later. } // Begin execution var ret []byte var err error if nativeContract := registeredNativeContracts[addr]; nativeContract != nil { // Native contract ret, err = nativeContract(vm.appState, callee, args, &gasLimit) // for now we fire the Call event. maybe later we'll fire more particulars var exception string if err != nil { exception = err.Error() } // NOTE: these fire call events and not particular events for eg name reg or permissions vm.fireCallEvent(&exception, &ret, callee, &Account{Address: addr}, args, value, gas) } else { // EVM contract if useGasNegative(gas, GasGetAccount, &err) { return nil, err } acc := vm.appState.GetAccount(addr) // since CALL is used also for sending funds, // acc may not exist yet. This is an error for // CALLCODE, but not for CALL, though I don't think // ethereum actually cares if op == CALLCODE { if acc == nil { return nil, firstErr(err, ErrUnknownAddress) } ret, err = vm.Call(callee, callee, acc.Code, args, value, gas) } else { if acc == nil { // nil account means we're sending funds to a new account if !HasPermission(vm.appState, caller, ptypes.CreateAccount) { return nil, ErrPermission{"create_account"} } acc = &Account{Address: addr} vm.appState.UpdateAccount(acc) // send funds to new account ret, err = vm.Call(callee, acc, acc.Code, args, value, gas) } else { // call standard contract ret, err = vm.Call(callee, acc, acc.Code, args, value, gas) } } } // Push result if err != nil { dbg.Printf("error on call: %s\n", err.Error()) stack.Push(Zero256) } else { stack.Push(One256) dest, ok := subslice(memory, retOffset, retSize) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } copy(dest, ret) } // Handle remaining gas. *gas += gasLimit dbg.Printf("resume %X (%v)\n", callee.Address, gas) case RETURN: // 0xF3 offset, size := stack.Pop64(), stack.Pop64() ret, ok := subslice(memory, offset, size) if !ok { return nil, firstErr(err, ErrMemoryOutOfBounds) } dbg.Printf(" => [%v, %v] (%d) 0x%X\n", offset, size, len(ret), ret) output = copyslice(ret) return output, nil case SUICIDE: // 0xFF addr := stack.Pop() if useGasNegative(gas, GasGetAccount, &err) { return nil, err } // TODO if the receiver is , then make it the fee. (?) // TODO: create account if doesn't exist (no reason not to) receiver := vm.appState.GetAccount(addr) if receiver == nil { return nil, firstErr(err, ErrUnknownAddress) } balance := callee.Balance receiver.Balance += balance vm.appState.UpdateAccount(receiver) vm.appState.RemoveAccount(callee) dbg.Printf(" => (%X) %v\n", addr[:4], balance) fallthrough case STOP: // 0x00 return nil, nil default: dbg.Printf("(pc) %-3v Invalid opcode %X\n", pc, op) return nil, fmt.Errorf("Invalid opcode %X", op) } pc++ } }