Exemplo n.º 1
0
func (this *TrainingSet) sumParameters(i0, i1 int, Res **Matrix.Matrix, done chan<- bool) {
	di := i1 - i0

	if di >= THRESHOLD {
		done2 := make(chan bool, THRESHOLD)
		mi := i0 + di/2

		res1 := Matrix.NullMatrixP(1, this.Xs.GetNColumns())
		res2 := Matrix.NullMatrixP(1, this.Xs.GetNColumns())

		go this.sumParameters(i0, mi, &res1, done2)

		go this.sumParameters(mi, i1, &res2, done2)

		<-done2
		<-done2

		SP, _ := Matrix.Sum(res1, res2)

		*Res = SP

	} else {
		for i := i0; i <= i1; i++ {

			xsi := this.Xs.GetRow(i)
			SP, _ := Matrix.Sum(*Res, xsi)
			*Res = SP
		}
	}

	done <- true

}
Exemplo n.º 2
0
func (this *TrainingSet) Variance_sum(i0, i1 int, mean *Matrix.Matrix, res **Matrix.Matrix, sustract *Matrix.Matrix, done chan<- bool) {
	di := i1 - i0

	if di >= THRESHOLD {
		mi := i0 + di/2
		done2 := make(chan bool, THRESHOLD)

		res1 := Matrix.NullMatrixP(1, this.Xs.GetNColumns())
		res2 := Matrix.NullMatrixP(1, this.Xs.GetNColumns())

		go this.Variance_sum(i0, mi, mean, &res1, sustract, done2)
		go this.Variance_sum(mi, i1, mean, &res1, sustract, done2)

		<-done2
		<-done2

		SP, _ := Matrix.Sum(res1, res2)
		*res = SP

	} else {
		for i := i0; i <= i1; i++ {
			xsi := this.Xs.GetRow(i)
			Sustract, _ := Matrix.Sustract(mean, xsi)
			Square := Matrix.DotMultiplication(Sustract, Sustract)

			sustract.SetRow(i, Sustract)

			SP, _ := Matrix.Sum(Square, *res)
			*res = SP
		}
	}
	done <- true
}
Exemplo n.º 3
0
Arquivo: ANN.go Projeto: eddytrex/AIgo
func (this *ANN) UpdateWeights(length float64, changeBeasWeights bool) {

	for i := 0; i < len(this.Weights); i++ {

		if changeBeasWeights {
			this.BestWeightsFound[i] = this.Weights[i]
		}

		D, _ := Matrix.Sum(this.Δ[i].Scalar(complex(-this.η, 0)), this.Δ1[i].Scalar(complex(this.α, 0)))

		this.Weights[i], _ = Matrix.Sum(this.Weights[i], D)

	}
}
Exemplo n.º 4
0
Arquivo: ANN.go Projeto: eddytrex/AIgo
func (this *ANN) BackPropagation(As, AsDerviate *[](*Matrix.Matrix), ForwardOutput *Matrix.Matrix, Y *Matrix.Matrix, flen float64) {
	ð := this.DerviateCostFunction(ForwardOutput, Y)

	this.ð[len(this.ð)-1] = ð

	this.AcumatedError, _ = Matrix.Sum(this.CostFunction(ForwardOutput, Y), this.AcumatedError)

	for i := len(this.Weights) - 1; i >= 0; i-- {
		A := (*As)[i]
		Aderviate := (*AsDerviate)[i]

		var ðtemp *Matrix.Matrix
		if i == len(this.Weights)-1 {
			ðtemp = this.ð[i+1].Transpose()
		} else {
			ðtemp = this.ð[i+1].MatrixWithoutLastRow().Transpose()
		}

		//Calc ð

		//fmt.Println("ð(i+1)", this.ð[i+1].ToString())
		//fmt.Println("W(i)", this.Weights[i].ToString())

		Product := Matrix.Product(this.Weights[i], ðtemp.Transpose())
		//fmt.Println("Product", i, " ", Product.ToString())

		this.ð[i] = Matrix.DotMultiplication(Product, Aderviate.AddRowsToDown(Matrix.I(1)))

		//Calc of Derivate with respect to the Weights

		//ðtemp:= i==len(this.Weights) - 1? this.ð[i+1].Transpose() : this.ð[i+1].MatrixWithoutLastRow().Transpose()
		Dw := Matrix.Product(A, ðtemp)

		this.Δ[i], _ = Matrix.Sum(this.Δ[i], Dw)
	}

	return
}
Exemplo n.º 5
0
func GradientDescent(alpha complex128, Tolerance complex128, ts *TrainingSet, f func(x complex128) complex128) *Hypothesis {
	n := ts.Xs.GetNColumns()
	m := ts.Xs.GetMRows()

	//Xsc:=ts.Xs.Copy()

	ts.AddX0() // add  the parametrer x0, with value 1, to all elements of the training set

	t := Matrix.NullMatrixP(1, n+1) // put 0 to the parameters theta
	thetaP := t

	//thetaP:=Matrix.RandomMatrix(1,n+1)  // Generates a random values of parameters theta

	var h1 Hypothesis

	h1.H = f
	h1.ThetaParameters = thetaP

	var Error complex128

	Error = complex(1.0, 0)

	var it = 1

	diferencia, diferenciaT := h1.Parallel_DiffH1Ys(ts)
	jt := Matrix.Product(diferenciaT, diferencia).Scalar(1/complex(2.0*float64(m), 0.0)).GetValue(1, 1)

	alpha = 1 / jt

	for cmplx.Abs(Error) >= cmplx.Abs(Tolerance) { // Until converges

		ThetaPB := h1.ThetaParameters.Copy() //for Error Calc

		//diff:=h1.DiffH1Ys(ts)
		_, diffT := h1.Parallel_DiffH1Ys(ts) //h(x)-y

		product := Matrix.Product(diffT, ts.Xs) //Sum( (hi(xi)-yi)*xij)  in matrix form

		h1.Sum = product

		alpha_it := alpha / (cmplx.Sqrt(complex(float64(it), 0.0))) // re-calc alpha

		scalar := product.Scalar(-alpha_it / complex(float64(m), 0.0))

		//println("Delta", scalar.ToString())
		ThetaTemp, _ := Matrix.Sum(h1.ThetaParameters, scalar) //Theas=Theas-alfa/m*Sum( (hi(xi)-yi)*xij)  update the parameters

		h1.ThetaParameters = ThetaTemp

		diffError, _ := Matrix.Sustract(ThetaPB, h1.ThetaParameters) //diff between theta's Vector , calc the error

		Error = complex(diffError.FrobeniusNorm(), 0) //Frobenius Norm
		//Error=diffError.InfinityNorm()              //Infinty Norm

		//println("->", h1.ThetaParameters.ToString())
		//println("Error", Error)
		/*if it > 10 {
			break
		}*/
		it++
	}
	h1.M = m
	return &h1
}