// sizeofExpr generates code for a sizeof(x) expression. func (c *compiler) sizeofExpr(e *ast.SizeofExpr, lv *arch.LV, tv types.TypeAndValue) *node { lv.Value = tv.Value lv.Addressable = false n := newNode(opLit, lv, nil, nil, nil) return n }
// selectorExpr generates code for record accesses (a.x, a->x, etc) func (c *compiler) selectorExpr(e *ast.SelectorExpr, lv *arch.LV) *node { sel, found := c.Selections[e] if !found { c.errorf(e.Op.Pos, "no selection expression information found") return nil } n := c.exprInternal(e.X, lv) if sel.Indirect() { n = c.rvalue(n, lv) lv.Ident = false } lv.Addressable = true if !sel.IsUnion() && sel.Offset() != 0 { lv.Value = constant.MakeInt64(sel.Offset()) m := newNode(opLit, lv, nil, nil, nil) n = newNode(opAdd, lv, nil, n, m) } if isArray(sel.Obj().Type()) { lv.Addressable = false } lv.Type = sel.Type().Underlying() return n }
// logical generates code for || and && operators. func (c *compiler) logical(op scan.Type, e *ast.BinaryExpr, lv *arch.LV) *node { l := []*ast.BinaryExpr{e} for x := e.X; ; { y, ok := x.(*ast.BinaryExpr) if !ok || y.Op.Type != op { break } l = append(l, y) x = y.X } var lx arch.LV n := c.exprInternal(l[len(l)-1].X, lv) for i := len(l) - 1; i >= 0; i-- { var lv2 arch.LV if lx.Addr == 0 { lx.Addr = c.cg.Label() } n = c.rvalue(n, lv) n2 := c.exprInternal(l[i].Y, &lv2) n2 = c.rvalue(n2, &lv2) if op == scan.Lor { n = newNode(opBrTrue, &lx, nil, n, n2) } else { n = newNode(opBrFalse, &lx, nil, n, n2) } } n = newNode(opLab, &lx, nil, n, nil) n = newNode(opBool, nil, nil, n, nil) lv.Type = types.Typ[types.Int] lv.Addressable = false return n }
// indexExpr generates code for array accesses (a[x], etc). func (c *compiler) indexExpr(e *ast.IndexExpr, lv *arch.LV) *node { var lv2 arch.LV n := c.exprInternal(e.X, lv) lv.Type = lv.Type.Underlying() n = c.indirection(e, n, lv) m := c.exprInternal(e.Index, &lv2) m = c.rvalue(m, &lv2) record, isRecord := lv.Type.(*types.Record) if !isRecord && lv.Type != types.Typ[types.Char] { // if it is not a record, we just need to scale // it by the sizeof of the type m = newNode(opScale, nil, nil, m, nil) } else if isRecord { // if it is a struct, we use sizeof to figure // out the size to multiply by to get to the index lv2.Size = c.cg.Sizeof(record) m = newNode(opScaleBy, &lv2, nil, m, nil) } lv.Ident = false lv.Addressable = true return newNode(opAdd, lv, &lv2, n, m) }
// fold1 folds constant unary expressions. func (c *compiler) fold1(n *node) *node { var lv arch.LV switch n.op { case opScale: v, _ := strconv.Atoi(n.left.lv[0].Value.String()) lv.Value = constant.MakeInt64(int64(v * c.cg.Int())) default: return n } return newNode(opLit, &lv, nil, nil, nil) }
// reduce transforms expressions into equivalent but faster expressions. func (c *compiler) reduce(n *node) *node { var vl, vr int var lv arch.LV op := n.op cl := n.left.op == opLit cr := n.right.op == opLit if cl { vl, _ = strconv.Atoi(n.left.lv[0].Value.String()) } if cr { vr, _ = strconv.Atoi(n.right.lv[0].Value.String()) } switch { case (op == opPlus || op == opAdd) && cr && vr == 0: // x+0 -> x return n.left case (op == opPlus || op == opAdd) && cl && vl == 0: // 0+x -> x return n.right case op == opSub && cr && vr == 0: // x-0 -> x return n.left case op == opSub && cl && vl == 0: // 0-x -> -x return newNode(opNeg, nil, nil, n.right, nil) case op == opMul && ((cl && vl == 0) || (cr && vr == 0)): // 0*x -> 0 || x*0 -> 0 lv.Value = constant.MakeInt64(0) return newNode(opLit, &lv, nil, nil, nil) case op == opMul || op == opDiv: // reduce x*(2^n) or x/(2^n) to x<<n or x>>n lim := c.cg.Int()*8 - 1 for i, k := 0, 1; i < lim; i, k = i+1, k<<1 { lv.Value = constant.MakeInt64(int64(i)) m := newNode(opLit, &lv, nil, nil, nil) if cr && k == vr { if op == opMul { return newNode(opLsh, nil, nil, n.left, m) } else { return newNode(opRsh, nil, nil, n.left, m) } } else if cl && k == vl && op == opMul { return newNode(opLsh, nil, nil, n.right, m) } } } return n }
// unaryExpr generates code unary operators (+a, -a, ~a, !a, etc). func (c *compiler) unaryExpr(e *ast.UnaryExpr, lv *arch.LV) *node { pos := e.Span().Start n := c.exprInternal(e.X, lv) var x opcode switch op := e.Op.Type; op { case scan.Inc, scan.Dec: switch { case op == scan.Inc && e.Affix == ast.Prefix: x = opPreInc case op == scan.Inc && e.Affix == ast.Postfix: x = opPostInc case op == scan.Dec && e.Affix == ast.Prefix: x = opPreDec case op == scan.Dec && e.Affix == ast.Postfix: x = opPostDec } n = newNode(x, lv, nil, n, nil) lv.Addressable = false case scan.Plus: n = c.rvalue(n, lv) lv.Addressable = false case scan.Minus, scan.Negate, scan.Not: switch op { case scan.Minus: x = opNeg case scan.Negate: x = opNot case scan.Not: x = opLogNot } n = c.rvalue(n, lv) n = newNode(x, lv, nil, n, nil) lv.Addressable = false case scan.And: if lv.Addressable && lv.Ident { n = newNode(opAddr, lv, nil, n, nil) } lv.Addressable = false default: c.errorf(pos, "invalid unary expression %v", op) } return n }
// rvalue generates code for loading a value of the variable if it addressable. func (*compiler) rvalue(n *node, lv *arch.LV) *node { if lv.Addressable { n = newNode(opRval, lv, nil, n, nil) lv.Addressable = false } return n }
// binaryExpr generates code for binary operators. func (c *compiler) binaryExpr(e *ast.BinaryExpr, lv *arch.LV) *node { op := e.Op.Type if op == scan.Land || op == scan.Lor { return c.logical(op, e, lv) } var lv2 arch.LV n := c.exprInternal(e.X, lv) m := c.rvalue(c.exprInternal(e.Y, &lv2), &lv2) bop := binOp(op) aop := arithOp(op) switch { // regular binary operators (+, -, *, /, etc) case bop != 0: tv, found := c.typAndValue(e) if !found { return nil } n = c.rvalue(n, lv) lv.Btype = tv.Type return newNode(bop, lv, &lv2, n, m) // binary assignment operator such as (+=, -=, *=, /=, etc) case aop != 0: lvs := *lv src := c.rvalue(n, &lvs) m = newNode(aop, lv, &lv2, src, m) n = newNode(opAssign, lv, &lv2, n, m) lv.Addressable = false // assignment operator (=) case op == scan.Assign: n = newNode(opAssign, lv, &lv2, n, m) lv.Addressable = false // comma operator (,) case op == scan.Comma: n = c.rvalue(n, lv) n = newNode(opComma, &lv2, nil, n, m) default: c.errorf(e.Span().Start, "unknown binary op: %s\n", e.Op.Text) } return n }
// indirection dereferences a pointer and generate code to load it. func (c *compiler) indirection(e ast.Expr, n *node, lv *arch.LV) *node { pos := e.Span().Start n = c.rvalue(n, lv) ptr, ok := lv.Type.(*types.Pointer) if !ok { c.errorf(pos, "indirection through non pointer") return nil } else if isVoidPointer(lv.Type) { c.errorf(pos, "dereferencing void pointer") return nil } lv.Ident = false lv.Type = ptr.Elem().Underlying() return n }
// call expression generates code for calling functions (f(x), fact(1), etc). func (c *compiler) callExpr(e *ast.CallExpr, lv *arch.LV) *node { c.exprInternal(e.Fun, lv) n := c.fnArgs(e.Args) if sig, ok := lv.Type.(*types.Signature); ok { lv.Size = len(e.Args) lv.Type = sig.Result().Type().Underlying() if !lv.Addressable { // regular function calls n = newNode(opCall, lv, nil, n, nil) } else { // function pointer calls n = newNode(opCalr, lv, nil, n, nil) } } lv.Addressable = false return n }
// condExpr generates code for ? and : operators. func (c *compiler) condExpr(e *ast.CondExpr, lv *arch.LV) *node { l := []*ast.CondExpr{e} for x := e.Cond; ; { y, ok := x.(*ast.CondExpr) if !ok { break } l = append(l, y) x = y.Cond } var lx arch.LV var l2 int var typ types.Type n := c.exprInternal(l[len(l)-1].Cond, lv) for i := len(l) - 1; i >= 0; i-- { var lv2 arch.LV n = c.rvalue(n, lv) l1 := c.cg.Label() if l2 == 0 { l2 = c.cg.Label() } n2 := c.exprInternal(l[i].X, &lv2) n2 = c.rvalue(n2, &lv2) lx.Addr = l1 n = newNode(opBrFalse, &lx, nil, n, n2) if typ == nil { typ = lv2.Type } n2 = c.exprInternal(l[i].Y, &lv2) n2 = c.rvalue(n2, &lv2) n = newNode(opGlue, nil, nil, n, n2) } lx.Addr = l2 n = newNode(opIfElse, &lx, nil, n, nil) lv.Type = typ lv.Addressable = false return n }
// defineLocal defines a variable at a function scope. func (c *compiler) defineLocal(v *types.Var, lv *arch.LV) { val := c.cg.Label() lv.Addr = val c.cg.Data() intSize := c.cg.Int() ptrSize := c.cg.Pointer() size := 1 typ := v.Type().Underlying() prim := primType(typ) array, isArray := typ.(*types.Array) isRecord := isRecord(typ, true) if isArray { size = int(array.Len()) } init := 0 if x := v.Value(); x != nil { init, _ = strconv.Atoi(x.String()) } if !isArray && !isRecord { c.cg.Lab(val) } switch { case isRecord: c.cg.BSS(c.cg.Labname(val), c.cg.Sizeof(typ), true) case prim == types.Typ[types.Char]: if isArray { c.cg.BSS(c.cg.Labname(val), size, true) } else { c.cg.Defb(init) c.cg.Align(1, intSize) } case prim == types.Typ[types.Int]: if isArray { c.cg.BSS(c.cg.Labname(val), size*intSize, true) } else { c.cg.Defw(init) } default: if isArray { c.cg.BSS(c.cg.Labname(val), size*ptrSize, true) } else { c.cg.Defp(init) } } }
// starExpr generates code for a dereference expression (*a, etc). func (c *compiler) starExpr(e *ast.StarExpr, lv *arch.LV) *node { n := c.exprInternal(e.X, lv) n = c.indirection(e, n, lv) lv.Addressable = true return n }
// ident generates code for an identifier by loading it into the accumulator. func (c *compiler) ident(e *ast.Ident, lv *arch.LV, tv types.TypeAndValue) *node { lv.Ident = true lv.Type = tv.Type.Underlying() lv.Name = e.Name _, isFunc := tv.Type.(*types.Signature) if isFunc { if x, ok := c.Uses[e]; ok { switch x := x.(type) { case *types.Func: lv.Storage = x.Storage() return newNode(opAddr, lv, nil, nil, nil) case *types.Fwrd: return newNode(opAddr, lv, nil, nil, nil) } } } v, found := c.variable(e, c.Uses) if !found { lv.Ident = false return nil } s, found := c.symbol(v) if !found { lv.Ident = false return nil } _, isRecord := lv.Type.(*types.Record) // arrays decay to pointers, so we need to get the original type // because the type and value by the typechecker is recorded as a pointer array, isArray := v.Type().(*types.Array) lv.Addr = s.Addr lv.Value = s.Value lv.Storage = v.Storage() switch { // constants case tv.Value != nil: lv.Value = tv.Value return newNode(opLit, lv, nil, nil, nil) case isArray: lv.Type = types.NewPointer(array.Elem(), nil) return newNode(opAddr, lv, nil, nil, nil) case isRecord: lv.Ident = false return newNode(opAddr, lv, nil, nil, nil) // variable that a integer or a pointer default: lv.Addressable = true return newNode(opIdent, lv, nil, nil, nil) } }
// castExpr generates code casting ((void**) f, (int) a, etc). func (c *compiler) castExpr(e *ast.CastExpr, lv *arch.LV, tv types.TypeAndValue) *node { n := c.exprInternal(e.X, lv) lv.Type = tv.Type return n }
// exprInternal is the main function for generating code by figuring // out what kind of expression it is. func (c *compiler) exprInternal(e ast.Expr, lv *arch.LV) *node { lv.Ident = false pos := e.Span().Start tv, found := c.typAndValue(e) if !found { return nil } // for constants we can just get the value right away if tv.Value != nil { lv.Type = tv.Type lv.Value = tv.Value switch tv.Type { case types.Typ[types.UntypedString]: str, err := strconv.Unquote(tv.Value.String()) if err != nil { c.errorf(pos, "invalid constant %v: %v", tv.Value, err) } c.cg.Data() lab := c.cg.Label() c.cg.Lab(lab) c.cg.Defs(str) c.cg.Defb(0) c.cg.Align(len(str)+1, c.cg.Int()) lv.Addr = lab return newNode(opLdlab, lv, nil, nil, nil) default: return newNode(opLit, lv, nil, nil, nil) } } switch e := e.(type) { case *ast.BinaryExpr: return c.binaryExpr(e, lv) case *ast.UnaryExpr: return c.unaryExpr(e, lv) case *ast.SizeofExpr: return c.sizeofExpr(e, lv, tv) case *ast.StarExpr: return c.starExpr(e, lv) case *ast.CallExpr: return c.callExpr(e, lv) case *ast.Ident: return c.ident(e, lv, tv) case *ast.ParenExpr: return c.exprInternal(e.X, lv) case *ast.IndexExpr: return c.indexExpr(e, lv) case *ast.SelectorExpr: return c.selectorExpr(e, lv) case *ast.CondExpr: return c.condExpr(e, lv) case *ast.CastExpr: return c.castExpr(e, lv, tv) case *ast.BasicType: lv.Type = tv.Type default: c.errorf(pos, "invalid expression: %T", e) } return nil }