func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog { if t.IsInteger() && n1.Op == gc.OLITERAL && n1.Int64() == 0 && n2.Op != gc.OLITERAL { op = gc.Brrev(op) n1, n2 = n2, n1 } var r1, r2, g1, g2 gc.Node gc.Regalloc(&r1, t, n1) gc.Regalloc(&g1, n1.Type, &r1) gc.Cgen(n1, &g1) gmove(&g1, &r1) if t.IsInteger() && n2.Op == gc.OLITERAL && n2.Int64() == 0 { gins(arm.ACMP, &r1, n2) } else { gc.Regalloc(&r2, t, n2) gc.Regalloc(&g2, n1.Type, &r2) gc.Cgen(n2, &g2) gmove(&g2, &r2) gins(optoas(gc.OCMP, t), &r1, &r2) gc.Regfree(&g2) gc.Regfree(&r2) } gc.Regfree(&g1) gc.Regfree(&r1) return gc.Gbranch(optoas(op, t), nil, likely) }
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog { if t.IsInteger() && n1.Op == gc.OLITERAL && n2.Op != gc.OLITERAL { // Reverse comparison to place constant last. op = gc.Brrev(op) n1, n2 = n2, n1 } var r1, r2, g1, g2 gc.Node gc.Regalloc(&r1, t, n1) gc.Regalloc(&g1, n1.Type, &r1) gc.Cgen(n1, &g1) gmove(&g1, &r1) if t.IsInteger() && gc.Isconst(n2, gc.CTINT) { ginscon2(optoas(gc.OCMP, t), &r1, n2.Int64()) } else { gc.Regalloc(&r2, t, n2) gc.Regalloc(&g2, n1.Type, &r2) gc.Cgen(n2, &g2) gmove(&g2, &r2) gcmp(optoas(gc.OCMP, t), &r1, &r2) gc.Regfree(&g2) gc.Regfree(&r2) } gc.Regfree(&g1) gc.Regfree(&r1) return gc.Gbranch(optoas(op, t), nil, likely) }
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog { if t.IsInteger() || t.Etype == gc.Tptr { if (n1.Op == gc.OLITERAL || n1.Op == gc.OADDR && n1.Left.Op == gc.ONAME) && n2.Op != gc.OLITERAL { // Reverse comparison to place constant (including address constant) last. op = gc.Brrev(op) n1, n2 = n2, n1 } } // General case. var r1, r2, g1, g2 gc.Node // A special case to make write barriers more efficient. // Comparing the first field of a named struct can be done directly. base := n1 if n1.Op == gc.ODOT && n1.Left.Type.IsStruct() && n1.Left.Type.Field(0).Sym == n1.Sym { base = n1.Left } if base.Op == gc.ONAME && base.Class != gc.PAUTOHEAP || n1.Op == gc.OINDREG { r1 = *n1 } else { gc.Regalloc(&r1, t, n1) gc.Regalloc(&g1, n1.Type, &r1) gc.Cgen(n1, &g1) gmove(&g1, &r1) } if n2.Op == gc.OLITERAL && t.IsInteger() || n2.Op == gc.OADDR && n2.Left.Op == gc.ONAME && n2.Left.Class == gc.PEXTERN { r2 = *n2 } else { gc.Regalloc(&r2, t, n2) gc.Regalloc(&g2, n1.Type, &r2) gc.Cgen(n2, &g2) gmove(&g2, &r2) } gins(optoas(gc.OCMP, t), &r1, &r2) if r1.Op == gc.OREGISTER { gc.Regfree(&g1) gc.Regfree(&r1) } if r2.Op == gc.OREGISTER { gc.Regfree(&g2) gc.Regfree(&r2) } return gc.Gbranch(optoas(op, t), nil, likely) }
func bgen_float(n *gc.Node, wantTrue bool, likely int, to *obj.Prog) { nl := n.Left nr := n.Right op := n.Op if !wantTrue { // brcom is not valid on floats when NaN is involved. p1 := gc.Gbranch(obj.AJMP, nil, 0) p2 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) // No need to avoid re-genning ninit. bgen_float(n, true, -likely, p2) gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to) gc.Patch(p2, gc.Pc) return } if gc.Thearch.Use387 { op = gc.Brrev(op) // because the args are stacked if op == gc.OGE || op == gc.OGT { // only < and <= work right with NaN; reverse if needed nl, nr = nr, nl op = gc.Brrev(op) } var ax, n2, tmp gc.Node gc.Nodreg(&tmp, nr.Type, x86.REG_F0) gc.Nodreg(&n2, nr.Type, x86.REG_F0+1) gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX) if gc.Simsimtype(nr.Type) == gc.TFLOAT64 { if nl.Ullman > nr.Ullman { gc.Cgen(nl, &tmp) gc.Cgen(nr, &tmp) gins(x86.AFXCHD, &tmp, &n2) } else { gc.Cgen(nr, &tmp) gc.Cgen(nl, &tmp) } gins(x86.AFUCOMPP, &tmp, &n2) } else { // TODO(rsc): The moves back and forth to memory // here are for truncating the value to 32 bits. // This handles 32-bit comparison but presumably // all the other ops have the same problem. // We need to figure out what the right general // solution is, besides telling people to use float64. var t1 gc.Node gc.Tempname(&t1, gc.Types[gc.TFLOAT32]) var t2 gc.Node gc.Tempname(&t2, gc.Types[gc.TFLOAT32]) gc.Cgen(nr, &t1) gc.Cgen(nl, &t2) gmove(&t2, &tmp) gins(x86.AFCOMFP, &t1, &tmp) } gins(x86.AFSTSW, nil, &ax) gins(x86.ASAHF, nil, nil) } else { // Not 387 if !nl.Addable { nl = gc.CgenTemp(nl) } if !nr.Addable { nr = gc.CgenTemp(nr) } var n2 gc.Node gc.Regalloc(&n2, nr.Type, nil) gmove(nr, &n2) nr = &n2 if nl.Op != gc.OREGISTER { var n3 gc.Node gc.Regalloc(&n3, nl.Type, nil) gmove(nl, &n3) nl = &n3 } if op == gc.OGE || op == gc.OGT { // only < and <= work right with NopN; reverse if needed nl, nr = nr, nl op = gc.Brrev(op) } gins(foptoas(gc.OCMP, nr.Type, 0), nl, nr) if nl.Op == gc.OREGISTER { gc.Regfree(nl) } gc.Regfree(nr) } switch op { case gc.OEQ: // neither NE nor P p1 := gc.Gbranch(x86.AJNE, nil, -likely) p2 := gc.Gbranch(x86.AJPS, nil, -likely) gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to) gc.Patch(p1, gc.Pc) gc.Patch(p2, gc.Pc) case gc.ONE: // either NE or P gc.Patch(gc.Gbranch(x86.AJNE, nil, likely), to) gc.Patch(gc.Gbranch(x86.AJPS, nil, likely), to) default: gc.Patch(gc.Gbranch(optoas(op, nr.Type), nil, likely), to) } }