/* * generate division. * generates one of: * res = nl / nr * res = nl % nr * according to op. */ func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) { t := nl.Type t0 := t if t.Width < 8 { if t.IsSigned() { t = gc.Types[gc.TINT64] } else { t = gc.Types[gc.TUINT64] } } a := optoas(gc.ODIV, t) var tl gc.Node gc.Regalloc(&tl, t0, nil) var tr gc.Node gc.Regalloc(&tr, t0, nil) if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &tl) gc.Cgen(nr, &tr) } else { gc.Cgen(nr, &tr) gc.Cgen(nl, &tl) } if t != t0 { // Convert tl2 := tl tr2 := tr tl.Type = t tr.Type = t gmove(&tl2, &tl) gmove(&tr2, &tr) } // Handle divide-by-zero panic. p1 := ginsbranch(mips.ABNE, nil, &tr, nil, 0) if panicdiv == nil { panicdiv = gc.Sysfunc("panicdivide") } gc.Ginscall(panicdiv, -1) gc.Patch(p1, gc.Pc) gins3(a, &tr, &tl, nil) gc.Regfree(&tr) if op == gc.ODIV { var lo gc.Node gc.Nodreg(&lo, gc.Types[gc.TUINT64], mips.REG_LO) gins(mips.AMOVV, &lo, &tl) } else { // remainder in REG_HI var hi gc.Node gc.Nodreg(&hi, gc.Types[gc.TUINT64], mips.REG_HI) gins(mips.AMOVV, &hi, &tl) } gmove(&tl, res) gc.Regfree(&tl) }
/* * generate division. * generates one of: * res = nl / nr * res = nl % nr * according to op. */ func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) { // Have to be careful about handling // most negative int divided by -1 correctly. // The hardware will generate undefined result. // Also need to explicitly trap on division on zero, // the hardware will silently generate undefined result. // DIVW will leave unpredicable result in higher 32-bit, // so always use DIVD/DIVDU. t := nl.Type t0 := t check := 0 if gc.Issigned[t.Etype] { check = 1 if gc.Isconst(nl, gc.CTINT) && nl.Int() != -(1<<uint64(t.Width*8-1)) { check = 0 } else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 { check = 0 } } if t.Width < 8 { if gc.Issigned[t.Etype] { t = gc.Types[gc.TINT64] } else { t = gc.Types[gc.TUINT64] } check = 0 } a := optoas(gc.ODIV, t) var tl gc.Node gc.Regalloc(&tl, t0, nil) var tr gc.Node gc.Regalloc(&tr, t0, nil) if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &tl) gc.Cgen(nr, &tr) } else { gc.Cgen(nr, &tr) gc.Cgen(nl, &tl) } if t != t0 { // Convert tl2 := tl tr2 := tr tl.Type = t tr.Type = t gmove(&tl2, &tl) gmove(&tr2, &tr) } // Handle divide-by-zero panic. p1 := gins(optoas(gc.OCMP, t), &tr, nil) p1.To.Type = obj.TYPE_REG p1.To.Reg = ppc64.REGZERO p1 = gc.Gbranch(optoas(gc.ONE, t), nil, +1) if panicdiv == nil { panicdiv = gc.Sysfunc("panicdivide") } gc.Ginscall(panicdiv, -1) gc.Patch(p1, gc.Pc) var p2 *obj.Prog if check != 0 { var nm1 gc.Node gc.Nodconst(&nm1, t, -1) gins(optoas(gc.OCMP, t), &tr, &nm1) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if op == gc.ODIV { // a / (-1) is -a. gins(optoas(gc.OMINUS, t), nil, &tl) gmove(&tl, res) } else { // a % (-1) is 0. var nz gc.Node gc.Nodconst(&nz, t, 0) gmove(&nz, res) } p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) } p1 = gins(a, &tr, &tl) if op == gc.ODIV { gc.Regfree(&tr) gmove(&tl, res) } else { // A%B = A-(A/B*B) var tm gc.Node gc.Regalloc(&tm, t, nil) // patch div to use the 3 register form // TODO(minux): add gins3? p1.Reg = p1.To.Reg p1.To.Reg = tm.Reg gins(optoas(gc.OMUL, t), &tr, &tm) gc.Regfree(&tr) gins(optoas(gc.OSUB, t), &tm, &tl) gc.Regfree(&tm) gmove(&tl, res) } gc.Regfree(&tl) if check != 0 { gc.Patch(p2, gc.Pc) } }
/* * generate division. * generates one of: * res = nl / nr * res = nl % nr * according to op. */ func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) { // Have to be careful about handling // most negative int divided by -1 correctly. // The hardware will trap. // Also the byte divide instruction needs AH, // which we otherwise don't have to deal with. // Easiest way to avoid for int8, int16: use int32. // For int32 and int64, use explicit test. // Could use int64 hw for int32. t := nl.Type t0 := t check := 0 if gc.Issigned[t.Etype] { check = 1 if gc.Isconst(nl, gc.CTINT) && nl.Int() != -(1<<uint64(t.Width*8-1)) { check = 0 } else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 { check = 0 } } if t.Width < 4 { if gc.Issigned[t.Etype] { t = gc.Types[gc.TINT32] } else { t = gc.Types[gc.TUINT32] } check = 0 } a := optoas(op, t) var n3 gc.Node gc.Regalloc(&n3, t0, nil) var ax gc.Node var oldax gc.Node if nl.Ullman >= nr.Ullman { savex(x86.REG_AX, &ax, &oldax, res, t0) gc.Cgen(nl, &ax) gc.Regalloc(&ax, t0, &ax) // mark ax live during cgen gc.Cgen(nr, &n3) gc.Regfree(&ax) } else { gc.Cgen(nr, &n3) savex(x86.REG_AX, &ax, &oldax, res, t0) gc.Cgen(nl, &ax) } if t != t0 { // Convert ax1 := ax n31 := n3 ax.Type = t n3.Type = t gmove(&ax1, &ax) gmove(&n31, &n3) } var n4 gc.Node if gc.Nacl { // Native Client does not relay the divide-by-zero trap // to the executing program, so we must insert a check // for ourselves. gc.Nodconst(&n4, t, 0) gins(optoas(gc.OCMP, t), &n3, &n4) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if panicdiv == nil { panicdiv = gc.Sysfunc("panicdivide") } gc.Ginscall(panicdiv, -1) gc.Patch(p1, gc.Pc) } var p2 *obj.Prog if check != 0 { gc.Nodconst(&n4, t, -1) gins(optoas(gc.OCMP, t), &n3, &n4) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if op == gc.ODIV { // a / (-1) is -a. gins(optoas(gc.OMINUS, t), nil, &ax) gmove(&ax, res) } else { // a % (-1) is 0. gc.Nodconst(&n4, t, 0) gmove(&n4, res) } p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) } var olddx gc.Node var dx gc.Node savex(x86.REG_DX, &dx, &olddx, res, t) if !gc.Issigned[t.Etype] { gc.Nodconst(&n4, t, 0) gmove(&n4, &dx) } else { gins(optoas(gc.OEXTEND, t), nil, nil) } gins(a, &n3, nil) gc.Regfree(&n3) if op == gc.ODIV { gmove(&ax, res) } else { gmove(&dx, res) } restx(&dx, &olddx) if check != 0 { gc.Patch(p2, gc.Pc) } restx(&ax, &oldax) }
/* * generate division. * caller must set: * ax = allocated AX register * dx = allocated DX register * generates one of: * res = nl / nr * res = nl % nr * according to op. */ func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node, ax *gc.Node, dx *gc.Node) { // Have to be careful about handling // most negative int divided by -1 correctly. // The hardware will trap. // Also the byte divide instruction needs AH, // which we otherwise don't have to deal with. // Easiest way to avoid for int8, int16: use int32. // For int32 and int64, use explicit test. // Could use int64 hw for int32. t := nl.Type t0 := t check := false if gc.Issigned[t.Etype] { check = true if gc.Isconst(nl, gc.CTINT) && nl.Int() != -1<<uint64(t.Width*8-1) { check = false } else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 { check = false } } if t.Width < 4 { if gc.Issigned[t.Etype] { t = gc.Types[gc.TINT32] } else { t = gc.Types[gc.TUINT32] } check = false } var t1 gc.Node gc.Tempname(&t1, t) var t2 gc.Node gc.Tempname(&t2, t) if t0 != t { var t3 gc.Node gc.Tempname(&t3, t0) var t4 gc.Node gc.Tempname(&t4, t0) gc.Cgen(nl, &t3) gc.Cgen(nr, &t4) // Convert. gmove(&t3, &t1) gmove(&t4, &t2) } else { gc.Cgen(nl, &t1) gc.Cgen(nr, &t2) } var n1 gc.Node if !gc.Samereg(ax, res) && !gc.Samereg(dx, res) { gc.Regalloc(&n1, t, res) } else { gc.Regalloc(&n1, t, nil) } gmove(&t2, &n1) gmove(&t1, ax) var p2 *obj.Prog var n4 gc.Node if gc.Nacl { // Native Client does not relay the divide-by-zero trap // to the executing program, so we must insert a check // for ourselves. gc.Nodconst(&n4, t, 0) gins(optoas(gc.OCMP, t), &n1, &n4) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if panicdiv == nil { panicdiv = gc.Sysfunc("panicdivide") } gc.Ginscall(panicdiv, -1) gc.Patch(p1, gc.Pc) } if check { gc.Nodconst(&n4, t, -1) gins(optoas(gc.OCMP, t), &n1, &n4) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if op == gc.ODIV { // a / (-1) is -a. gins(optoas(gc.OMINUS, t), nil, ax) gmove(ax, res) } else { // a % (-1) is 0. gc.Nodconst(&n4, t, 0) gmove(&n4, res) } p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) } if !gc.Issigned[t.Etype] { var nz gc.Node gc.Nodconst(&nz, t, 0) gmove(&nz, dx) } else { gins(optoas(gc.OEXTEND, t), nil, nil) } gins(optoas(op, t), &n1, nil) gc.Regfree(&n1) if op == gc.ODIV { gmove(ax, res) } else { gmove(dx, res) } if check { gc.Patch(p2, gc.Pc) } }