Пример #1
0
func checkVarValue(t *testing.T, prog *ssa.Program, pkg *ssa.Package, ref []ast.Node, obj *types.Var, expKind string, wantAddr bool) {
	// The prefix of all assertions messages.
	prefix := fmt.Sprintf("VarValue(%s @ L%d)",
		obj, prog.Fset.Position(ref[0].Pos()).Line)

	v := prog.VarValue(obj, pkg, ref)

	// Kind is the concrete type of the ssa Value.
	gotKind := "nil"
	if v != nil {
		gotKind = fmt.Sprintf("%T", v)[len("*ssa."):]
	}

	// fmt.Printf("%s = %v (kind %q; expect %q) addr=%t\n", prefix, v, gotKind, expKind, wantAddr) // debugging

	// Check the kinds match.
	// "nil" indicates expected failure (e.g. optimized away).
	if expKind != gotKind {
		t.Errorf("%s concrete type == %s, want %s", prefix, gotKind, expKind)
	}

	// Check the types match.
	// If wantAddr, the expected type is the object's address.
	if v != nil {
		expType := obj.Type()
		if wantAddr {
			expType = types.NewPointer(expType)
		}
		if !types.IsIdentical(v.Type(), expType) {
			t.Errorf("%s.Type() == %s, want %s", prefix, v.Type(), expType)
		}
	}
}
Пример #2
0
func (p *exporter) field(f *types.Var) {
	// anonymous fields have "" name
	name := ""
	if !f.Anonymous() {
		name = f.Name()
	}

	// qualifiedName will always emit the field package for
	// anonymous fields because "" is not an exported name.
	p.qualifiedName(f.Pkg(), name)
	p.typ(f.Type())
}
Пример #3
0
// VarValue returns the SSA Value that corresponds to a specific
// identifier denoting the source-level named variable obj.
//
// VarValue returns nil if a local variable was not found, perhaps
// because its package was not built, the debug information was not
// requested during SSA construction, or the value was optimized away.
//
// ref is the path to an ast.Ident (e.g. from PathEnclosingInterval),
// and that ident must resolve to obj.
//
// pkg is the package enclosing the reference.  (A reference to a var
// may result in code, so we need to know where to find that code.)
//
// The Value of a defining (as opposed to referring) identifier is the
// value assigned to it in its definition.
//
// In many cases where the identifier appears in an lvalue context,
// the resulting Value is the var's address, not its value.
// For example, x in all these examples:
//    x.y = 0
//    x[0] = 0
//    _ = x[:]
//    x = X{}
//    _ = &x
//    x.method()    (iff method is on &x)
// and all package-level vars.  (This situation can be detected by
// comparing the types of the Var and Value.)
//
func (prog *Program) VarValue(obj *types.Var, pkg *Package, ref []ast.Node) Value {
	id := ref[0].(*ast.Ident)

	// Package-level variable?
	if v := prog.packageLevelValue(obj); v != nil {
		return v.(*Global)
	}

	// Must be a function-local variable.
	// (e.g. local, parameter, or field selection e.f)
	fn := EnclosingFunction(pkg, ref)
	if fn == nil {
		return nil // e.g. SSA not built
	}

	// Defining ident of a parameter?
	if id.Pos() == obj.Pos() {
		for _, param := range fn.Params {
			if param.Object() == obj {
				return param
			}
		}
	}

	// Other ident?
	for _, b := range fn.Blocks {
		for _, instr := range b.Instrs {
			if ref, ok := instr.(*DebugRef); ok {
				if ref.Pos() == id.Pos() {
					return ref.X
				}
			}
		}
	}

	return nil // e.g. debug info not requested, or var optimized away
}
Пример #4
0
// VarValue returns the SSA Value that corresponds to a specific
// identifier denoting the source-level named variable obj.
//
// VarValue returns nil if a local variable was not found, perhaps
// because its package was not built, the debug information was not
// requested during SSA construction, or the value was optimized away.
//
// ref is the path to an ast.Ident (e.g. from PathEnclosingInterval),
// and that ident must resolve to obj.
//
// pkg is the package enclosing the reference.  (A reference to a var
// always occurs within a function, so we need to know where to find it.)
//
// The Value of a defining (as opposed to referring) identifier is the
// value assigned to it in its definition.  Similarly, the Value of an
// identifier that is the LHS of an assignment is the value assigned
// to it in that statement.  In all these examples, VarValue(x) returns
// the value of x and isAddr==false.
//
//    var x X
//    var x = X{}
//    x := X{}
//    x = X{}
//
// When an identifier appears in an lvalue context other than as the
// LHS of an assignment, the resulting Value is the var's address, not
// its value.  This situation is reported by isAddr, the second
// component of the result.  In these examples, VarValue(x) returns
// the address of x and isAddr==true.
//
//    x.y = 0
//    x[0] = 0
//    _ = x[:]      (where x is an array)
//    _ = &x
//    x.method()    (iff method is on &x)
//
func (prog *Program) VarValue(obj *types.Var, pkg *Package, ref []ast.Node) (value Value, isAddr bool) {
	// All references to a var are local to some function, possibly init.
	fn := EnclosingFunction(pkg, ref)
	if fn == nil {
		return // e.g. def of struct field; SSA not built?
	}

	id := ref[0].(*ast.Ident)

	// Defining ident of a parameter?
	if id.Pos() == obj.Pos() {
		for _, param := range fn.Params {
			if param.Object() == obj {
				return param, false
			}
		}
	}

	// Other ident?
	for _, b := range fn.Blocks {
		for _, instr := range b.Instrs {
			if dr, ok := instr.(*DebugRef); ok {
				if dr.Pos() == id.Pos() {
					return dr.X, dr.IsAddr
				}
			}
		}
	}

	// Defining ident of package-level var?
	if v := prog.packageLevelValue(obj); v != nil {
		return v.(*Global), true
	}

	return // e.g. debug info not requested, or var optimized away
}
Пример #5
0
func (tr *Transformer) matchWildcard(xobj *types.Var, y ast.Expr) bool {
	name := xobj.Name()

	if tr.verbose {
		fmt.Fprintf(os.Stderr, "%s: wildcard %s -> %s?: ",
			tr.fset.Position(y.Pos()), name, astString(tr.fset, y))
	}

	// Check that y is assignable to the declared type of the param.
	if yt := tr.info.TypeOf(y); !types.AssignableTo(yt, xobj.Type()) {
		if tr.verbose {
			fmt.Fprintf(os.Stderr, "%s not assignable to %s\n", yt, xobj.Type())
		}
		return false
	}

	// A wildcard matches any expression.
	// If it appears multiple times in the pattern, it must match
	// the same expression each time.
	if old, ok := tr.env[name]; ok {
		// found existing binding
		tr.allowWildcards = false
		r := tr.matchExpr(old, y)
		if tr.verbose {
			fmt.Fprintf(os.Stderr, "%t secondary match, primary was %s\n",
				r, astString(tr.fset, old))
		}
		tr.allowWildcards = true
		return r
	}

	if tr.verbose {
		fmt.Fprintf(os.Stderr, "primary match\n")
	}

	tr.env[name] = y // record binding
	return true
}
Пример #6
0
// checkStructField checks that the field renaming will not cause
// conflicts at its declaration, or ambiguity or changes to any selection.
func (r *renamer) checkStructField(from *types.Var) {
	// Check that the struct declaration is free of field conflicts,
	// and field/method conflicts.

	// go/types offers no easy way to get from a field (or interface
	// method) to its declaring struct (or interface), so we must
	// ascend the AST.
	info, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
	// path is [Ident Field FieldList StructType ... File].  Can't fail.

	// Ascend past parens (unlikely).
	i := 4
	for {
		_, ok := path[i].(*ast.ParenExpr)
		if !ok {
			break
		}
		i++
	}
	if spec, ok := path[i].(*ast.TypeSpec); ok {
		// This struct is also a named type.
		// We must check for direct (non-promoted) field/field
		// and method/field conflicts.
		named := info.Defs[spec.Name].Type()
		prev, indices, _ := types.LookupFieldOrMethod(named, true, info.Pkg, r.to)
		if len(indices) == 1 {
			r.errorf(from.Pos(), "renaming this field %q to %q",
				from.Name(), r.to)
			r.errorf(prev.Pos(), "\twould conflict with this %s",
				objectKind(prev))
			return // skip checkSelections to avoid redundant errors
		}
	} else {
		// This struct is not a named type.
		// We need only check for direct (non-promoted) field/field conflicts.
		T := info.Types[path[3].(*ast.StructType)].Type.Underlying().(*types.Struct)
		for i := 0; i < T.NumFields(); i++ {
			if prev := T.Field(i); prev.Name() == r.to {
				r.errorf(from.Pos(), "renaming this field %q to %q",
					from.Name(), r.to)
				r.errorf(prev.Pos(), "\twould conflict with this field")
				return // skip checkSelections to avoid redundant errors
			}
		}
	}

	// Renaming an anonymous field requires renaming the type too. e.g.
	// 	print(s.T)       // if we rename T to U,
	// 	type T int       // this and
	// 	var s struct {T} // this must change too.
	if from.Anonymous() {
		if named, ok := from.Type().(*types.Named); ok {
			r.check(named.Obj())
		} else if named, ok := deref(from.Type()).(*types.Named); ok {
			r.check(named.Obj())
		}
	}

	// Check integrity of existing (field and method) selections.
	r.checkSelections(from)
}
Пример #7
0
func (g *Go) pkg_var(v *types.Var) (ret content.Variable) {
	ret.Name.Relative = dotre.ReplaceAllString(v.Name(), "")
	ret.Type = g.pkg_type(v.Type())
	return
}
Пример #8
0
func (p *exporter) param(v *types.Var) {
	p.string(v.Name())
	p.typ(v.Type())
}
Пример #9
0
// makeWrapper returns a synthetic method that delegates to the
// declared method denoted by meth.Obj(), first performing any
// necessary pointer indirections or field selections implied by meth.
//
// The resulting method's receiver type is meth.Recv().
//
// This function is versatile but quite subtle!  Consider the
// following axes of variation when making changes:
//   - optional receiver indirection
//   - optional implicit field selections
//   - meth.Obj() may denote a concrete or an interface method
//   - the result may be a thunk or a wrapper.
//
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
//
func makeWrapper(prog *Program, meth *types.Selection) *Function {
	obj := meth.Obj().(*types.Func)       // the declared function
	sig := meth.Type().(*types.Signature) // type of this wrapper

	var recv *types.Var // wrapper's receiver or thunk's params[0]
	name := obj.Name()
	var description string
	var start int // first regular param
	if meth.Kind() == types.MethodExpr {
		name += "$thunk"
		description = "thunk"
		recv = sig.Params().At(0)
		start = 1
	} else {
		description = "wrapper"
		recv = sig.Recv()
	}

	description = fmt.Sprintf("%s for %s", description, meth.Obj())
	if prog.mode&LogSource != 0 {
		defer logStack("make %s to (%s)", description, recv.Type())()
	}
	fn := &Function{
		name:      name,
		method:    meth,
		object:    obj,
		Signature: sig,
		Synthetic: description,
		Prog:      prog,
		pos:       obj.Pos(),
	}
	fn.startBody()
	fn.addSpilledParam(recv)
	createParams(fn, start)

	indices := meth.Index()

	var v Value = fn.Locals[0] // spilled receiver
	if isPointer(meth.Recv()) {
		v = emitLoad(fn, v)

		// For simple indirection wrappers, perform an informative nil-check:
		// "value method (T).f called using nil *T pointer"
		if len(indices) == 1 && !isPointer(recvType(obj)) {
			var c Call
			c.Call.Value = &Builtin{
				name: "ssa:wrapnilchk",
				sig: types.NewSignature(nil, nil,
					types.NewTuple(anonVar(meth.Recv()), anonVar(tString), anonVar(tString)),
					types.NewTuple(anonVar(meth.Recv())), false),
			}
			c.Call.Args = []Value{
				v,
				stringConst(deref(meth.Recv()).String()),
				stringConst(meth.Obj().Name()),
			}
			c.setType(v.Type())
			v = fn.emit(&c)
		}
	}

	// Invariant: v is a pointer, either
	//   value of *A receiver param, or
	// address of  A spilled receiver.

	// We use pointer arithmetic (FieldAddr possibly followed by
	// Load) in preference to value extraction (Field possibly
	// preceded by Load).

	v = emitImplicitSelections(fn, v, indices[:len(indices)-1])

	// Invariant: v is a pointer, either
	//   value of implicit *C field, or
	// address of implicit  C field.

	var c Call
	if r := recvType(obj); !isInterface(r) { // concrete method
		if !isPointer(r) {
			v = emitLoad(fn, v)
		}
		c.Call.Value = prog.declaredFunc(obj)
		c.Call.Args = append(c.Call.Args, v)
	} else {
		c.Call.Method = obj
		c.Call.Value = emitLoad(fn, v)
	}
	for _, arg := range fn.Params[1:] {
		c.Call.Args = append(c.Call.Args, arg)
	}
	emitTailCall(fn, &c)
	fn.finishBody()
	return fn
}