func (p *planner) releaseLeases(db client.DB) { if p.leases != nil { for _, lease := range p.leases { if err := p.leaseMgr.Release(lease); err != nil { log.Warning(err) } } p.leases = nil } // TODO(pmattis): This is a hack. Remove when schema change operations work // properly. if p.modifiedSchemas != nil { for _, d := range p.modifiedSchemas { var lease *LeaseState err := db.Txn(func(txn *client.Txn) error { var err error lease, err = p.leaseMgr.Acquire(txn, d.id, d.version) return err }) if err != nil { log.Warning(err) continue } if err := p.leaseMgr.Release(lease); err != nil { log.Warning(err) } } p.modifiedSchemas = nil } }
// purgeOldLeases refreshes the leases on a table. Unused leases older than // minVersion will be released. // If deleted is set, minVersion is ignored; no lease is acquired and all // existing unused leases are released. The table is further marked for // deletion, which will cause existing in-use leases to be eagerly released once // they're not in use any more. // If t has no active leases, nothing is done. func (t *tableState) purgeOldLeases( db *client.DB, deleted bool, minVersion sqlbase.DescriptorVersion, store LeaseStore, ) error { t.mu.Lock() empty := len(t.active.data) == 0 t.mu.Unlock() if empty { // We don't currently have a lease on this table, so no need to refresh // anything. return nil } // Acquire and release a lease on the table at a version >= minVersion. var lease *LeaseState err := db.Txn(func(txn *client.Txn) error { var err error if !deleted { lease, err = t.acquire(txn, minVersion, store) if err == errTableDeleted { deleted = true } } if err == nil || deleted { t.mu.Lock() defer t.mu.Unlock() var toRelease []*LeaseState if deleted { t.deleted = true // If the table has been deleted, all leases are stale. toRelease = append([]*LeaseState(nil), t.active.data...) } else { // Otherwise, all but the lease we just took are stale. toRelease = append([]*LeaseState(nil), t.active.data[:len(t.active.data)-1]...) } if err := t.releaseLeasesIfNotActive(toRelease, store); err != nil { return err } return nil } return err }) if err != nil { return err } if lease == nil { return nil } return t.release(lease, store) }
func (hv *historyVerifier) runCmds(cmds []*cmd, historyIdx int, db *client.DB, t *testing.T) (string, map[string]int64, error) { var strs []string env := map[string]int64{} err := db.Txn(func(txn *client.Txn) error { for _, c := range cmds { c.historyIdx = historyIdx c.env = env c.init(nil) fmtStr, err := c.execute(txn, t) if err != nil { return err } strs = append(strs, fmt.Sprintf(fmtStr, 0, 0)) } return nil }) return strings.Join(strs, " "), env, err }
// startTestWriter creates a writer which initiates a sequence of // transactions, each which writes up to 10 times to random keys with // random values. If not nil, txnChannel is written to non-blockingly // every time a new transaction starts. func startTestWriter(db *client.DB, i int64, valBytes int32, wg *sync.WaitGroup, retries *int32, txnChannel chan struct{}, done <-chan struct{}, t *testing.T) { src := rand.New(rand.NewSource(i)) defer func() { if wg != nil { wg.Done() } }() for j := 0; ; j++ { select { case <-done: return default: first := true err := db.Txn(func(txn *client.Txn) error { if first && txnChannel != nil { select { case txnChannel <- struct{}{}: default: } } else if !first && retries != nil { atomic.AddInt32(retries, 1) } first = false for j := 0; j <= int(src.Int31n(10)); j++ { key := randutil.RandBytes(src, 10) val := randutil.RandBytes(src, int(src.Int31n(valBytes))) if err := txn.Put(key, val); err != nil { log.Infof("experienced an error in routine %d: %s", i, err) return err } } return nil }) if err != nil { t.Error(err) } else { time.Sleep(1 * time.Millisecond) } } } }
func (hv *historyVerifier) runTxn(txnIdx int, priority int32, isolation roachpb.IsolationType, cmds []*cmd, db *client.DB, t *testing.T) error { var retry int txnName := fmt.Sprintf("txn%d", txnIdx) err := db.Txn(func(txn *client.Txn) error { txn.SetDebugName(txnName, 0) if isolation == roachpb.SNAPSHOT { if err := txn.SetIsolation(roachpb.SNAPSHOT); err != nil { return err } } txn.InternalSetPriority(priority) env := map[string]int64{} // TODO(spencer): restarts must create additional histories. They // look like: given the current partial history and a restart on // txn txnIdx, re-enumerate a set of all histories containing the // remaining commands from extant txns and all commands from this // restarted txn. // If this is attempt > 1, reset cmds so no waits. if retry++; retry == 2 { for _, c := range cmds { c.done() } } if log.V(2) { log.Infof("%s, retry=%d", txnName, retry) } for i := range cmds { cmds[i].env = env if err := hv.runCmd(txn, txnIdx, retry, i, cmds, t); err != nil { if log.V(1) { log.Infof("%s encountered error: %s", cmds[i], err) } return err } } return nil }) hv.wg.Done() return err }
// refreshLease tries to refresh the node's table lease. func (m *LeaseManager) refreshLease(db *client.DB, id ID, minVersion DescriptorVersion) error { // Only attempt to update a lease for a table that is already leased. if t := m.findTableState(id, false); t == nil { return nil } // Acquire and release a lease on the table at a version >= minVersion. var lease *LeaseState if pErr := db.Txn(func(txn *client.Txn) *roachpb.Error { var pErr *roachpb.Error // Acquire() can only acquire a lease at a version if it has // already been acquired at that version, or that version // is the latest version. If the latest version is > minVersion // then the node acquires a lease at the latest version but // Acquire() itself returns an error. This is okay, because // we want to update the node lease. lease, pErr = m.Acquire(txn, id, minVersion) return pErr }); pErr != nil { return pErr.GoError() } return m.Release(lease) }
func (hv *historyVerifier) runHistory(historyIdx int, priorities []int32, isolations []roachpb.IsolationType, cmds []*cmd, db *client.DB, t *testing.T) error { plannedStr := historyString(cmds) if log.V(1) { log.Infof("attempting iso=%v pri=%v history=%s", isolations, priorities, plannedStr) } hv.actual = []string{} hv.wg.Add(len(priorities)) txnMap := map[int][]*cmd{} var prev *cmd for _, c := range cmds { c.historyIdx = historyIdx txnMap[c.txnIdx] = append(txnMap[c.txnIdx], c) c.init(prev) prev = c } for i, txnCmds := range txnMap { go func(i int, txnCmds []*cmd) { if err := hv.runTxn(i, priorities[i-1], isolations[i-1], txnCmds, db, t); err != nil { t.Errorf("(%s): unexpected failure running %s: %v", cmds, cmds[i], err) } }(i, txnCmds) } hv.wg.Wait() // Construct string for actual history. actualStr := strings.Join(hv.actual, " ") // Verify history. var verifyStrs []string verifyEnv := map[string]int64{} for _, c := range hv.verifyCmds { c.historyIdx = historyIdx c.env = verifyEnv c.init(nil) pErr := db.Txn(func(txn *client.Txn) *roachpb.Error { fmtStr, pErr := c.execute(txn, t) if pErr != nil { return pErr } cmdStr := fmt.Sprintf(fmtStr, 0, 0) verifyStrs = append(verifyStrs, cmdStr) return nil }) if pErr != nil { t.Errorf("failed on execution of verification cmd %s: %s", c, pErr) return pErr.GoError() } } err := hv.verify.checkFn(verifyEnv) if err == nil { if log.V(1) { log.Infof("PASSED: iso=%v, pri=%v, history=%q", isolations, priorities, actualStr) } } if hv.expSuccess && err != nil { verifyStr := strings.Join(verifyStrs, " ") t.Errorf("%d: iso=%v, pri=%v, history=%q: actual=%q, verify=%q: %s", historyIdx, isolations, priorities, plannedStr, actualStr, verifyStr, err) } return err }
// concurrentIncrements starts two Goroutines in parallel, both of which // read the integers stored at the other's key and add it onto their own. // It is checked that the outcome is serializable, i.e. exactly one of the // two Goroutines (the later write) sees the previous write by the other. func concurrentIncrements(db *client.DB, t *testing.T) { // wgStart waits for all transactions to line up, wgEnd has the main // function wait for them to finish. var wgStart, wgEnd sync.WaitGroup wgStart.Add(2 + 1) wgEnd.Add(2) for i := 0; i < 2; i++ { go func(i int) { // Read the other key, write key i. readKey := []byte(fmt.Sprintf(testUser+"/value-%d", (i+1)%2)) writeKey := []byte(fmt.Sprintf(testUser+"/value-%d", i)) defer wgEnd.Done() wgStart.Done() // Wait until the other goroutines are running. wgStart.Wait() if pErr := db.Txn(func(txn *client.Txn) *roachpb.Error { txn.SetDebugName(fmt.Sprintf("test-%d", i), 0) // Retrieve the other key. gr, pErr := txn.Get(readKey) if pErr != nil { return pErr } otherValue := int64(0) if gr.Value != nil { otherValue = gr.ValueInt() } _, pErr = txn.Inc(writeKey, 1+otherValue) return pErr }); pErr != nil { t.Error(pErr) } }(i) } // Kick the goroutines loose. wgStart.Done() // Wait for the goroutines to finish. wgEnd.Wait() // Verify that both keys contain something and, more importantly, that // one key actually contains the value of the first writer and not only // its own. total := int64(0) results := []int64(nil) for i := 0; i < 2; i++ { readKey := []byte(fmt.Sprintf(testUser+"/value-%d", i)) gr, pErr := db.Get(readKey) if pErr != nil { t.Fatal(pErr) } if gr.Value == nil { t.Fatalf("unexpected empty key: %s=%v", readKey, gr.Value) } total += gr.ValueInt() results = append(results, gr.ValueInt()) } // First writer should have 1, second one 2 if total != 3 { t.Fatalf("got unserializable values %v", results) } }
// concurrentIncrements starts two Goroutines in parallel, both of which // read the integers stored at the other's key and add it onto their own. // It is checked that the outcome is serializable, i.e. exactly one of the // two Goroutines (the later write) sees the previous write by the other. // The isMultiphase option runs the transaction in multiple phases recreating // the transaction from the transaction protobuf returned from the server. func concurrentIncrements(db *client.DB, t *testing.T, isMultiphase bool) { // wgStart waits for all transactions to line up, wgEnd has the main // function wait for them to finish. var wgStart, wgEnd sync.WaitGroup wgStart.Add(2 + 1) wgEnd.Add(2) for i := 0; i < 2; i++ { go func(i int) { // Read the other key, write key i. readKey := []byte(fmt.Sprintf(testUser+"/value-%d", (i+1)%2)) writeKey := []byte(fmt.Sprintf(testUser+"/value-%d", i)) defer wgEnd.Done() wgStart.Done() // Wait until the other goroutines are running. wgStart.Wait() if isMultiphase { applyInc := func(txn *client.Txn) (error, proto.Transaction) { txn.SetDebugName(fmt.Sprintf("test-%d", i)) b := client.Batch{} // Retrieve the other key. b.Get(readKey) if err := txn.Run(&b); err != nil { return err, txn.GetState() } otherValue := int64(0) gr := b.Results[0].Rows[0] if gr.Value != nil { otherValue = gr.ValueInt() } // New txn. txn = db.ReconstructTxn(txn.GetState()) // Write our key. b = client.Batch{} b.Inc(writeKey, 1+otherValue) if err := txn.Run(&b); err != nil { return err, txn.GetState() } // New txn. txn = db.ReconstructTxn(txn.GetState()) err := txn.Commit(&client.Batch{}) return err, txn.GetState() } for r := retry.Start(client.DefaultTxnRetryOptions); r.Next(); { txn := db.ReconstructTxn(proto.Transaction{}) if err, txnProto := applyInc(txn); err != nil { // New txn. txn = db.ReconstructTxn(txnProto) if err := txn.Rollback(); err != nil { t.Error(err) } else { // retry continue } } // exit retry break } } else { if err := db.Txn(func(txn *client.Txn) error { txn.SetDebugName(fmt.Sprintf("test-%d", i)) // Retrieve the other key. gr, err := txn.Get(readKey) if err != nil { return err } otherValue := int64(0) if gr.Value != nil { otherValue = gr.ValueInt() } _, err = txn.Inc(writeKey, 1+otherValue) return err }); err != nil { t.Error(err) } } }(i) } // Kick the goroutines loose. wgStart.Done() // Wait for the goroutines to finish. wgEnd.Wait() // Verify that both keys contain something and, more importantly, that // one key actually contains the value of the first writer and not only // its own. total := int64(0) results := []int64(nil) for i := 0; i < 2; i++ { readKey := []byte(fmt.Sprintf(testUser+"/value-%d", i)) gr, err := db.Get(readKey) if err != nil { log.Fatal(err) } if gr.Value == nil { t.Fatalf("unexpected empty key: %s=%v", readKey, gr.Value) } total += gr.ValueInt() results = append(results, gr.ValueInt()) } // First writer should have 1, second one 2 if total != 3 { t.Fatalf("got unserializable values %v", results) } }