Пример #1
0
// startFakeServerGossips creates local gossip instances and remote
// faked gossip instance. The remote gossip instance launches its
// faked gossip service just for check the client message.
func startFakeServerGossips(t *testing.T) (local *Gossip, remote *fakeGossipServer, stopper *stop.Stopper) {
	stopper = stop.NewStopper()
	lRPCContext := rpc.NewContext(&base.Context{Insecure: true}, nil, stopper)

	lserver := rpc.NewServer(lRPCContext)
	lln, err := netutil.ListenAndServeGRPC(stopper, lserver, util.TestAddr)
	if err != nil {
		t.Fatal(err)
	}
	local = New(lRPCContext, nil, stopper)
	local.start(lserver, lln.Addr())

	rRPCContext := rpc.NewContext(&base.Context{Insecure: true}, nil, stopper)

	rserver := rpc.NewServer(rRPCContext)
	rln, err := netutil.ListenAndServeGRPC(stopper, rserver, util.TestAddr)
	if err != nil {
		t.Fatal(err)
	}

	remote = newFakeGossipServer(rserver, stopper)
	addr := rln.Addr()
	remote.nodeAddr = util.MakeUnresolvedAddr(addr.Network(), addr.String())
	return
}
Пример #2
0
// CreateNode creates a simulation node and starts an RPC server for it.
func (n *Network) CreateNode() (*Node, error) {
	server := rpc.NewServer(n.rpcContext)
	ln, err := netutil.ListenAndServeGRPC(n.Stopper, server, util.TestAddr)
	if err != nil {
		return nil, err
	}
	node := &Node{Server: server, Addr: ln.Addr()}
	node.Gossip = gossip.New(n.rpcContext, nil, n.Stopper)
	n.Nodes = append(n.Nodes, node)
	return node, nil
}
Пример #3
0
// createTestNode creates an rpc server using the specified address,
// gossip instance, KV database and a node using the specified slice
// of engines. The server, clock and node are returned. If gossipBS is
// not nil, the gossip bootstrap address is set to gossipBS.
func createTestNode(addr net.Addr, engines []engine.Engine, gossipBS net.Addr, t *testing.T) (
	*grpc.Server, net.Addr, *hlc.Clock, *Node, *stop.Stopper) {
	ctx := storage.StoreContext{}

	stopper := stop.NewStopper()
	ctx.Clock = hlc.NewClock(hlc.UnixNano)
	nodeRPCContext := rpc.NewContext(nodeTestBaseContext, ctx.Clock, stopper)
	ctx.ScanInterval = 10 * time.Hour
	ctx.ConsistencyCheckInterval = 10 * time.Hour
	grpcServer := rpc.NewServer(nodeRPCContext)
	serverCtx := makeTestContext()
	g := gossip.New(
		context.Background(),
		nodeRPCContext,
		grpcServer,
		serverCtx.GossipBootstrapResolvers,
		stopper,
		metric.NewRegistry())
	ln, err := netutil.ListenAndServeGRPC(stopper, grpcServer, addr)
	if err != nil {
		t.Fatal(err)
	}
	if gossipBS != nil {
		// Handle possibility of a :0 port specification.
		if gossipBS.Network() == addr.Network() && gossipBS.String() == addr.String() {
			gossipBS = ln.Addr()
		}
		r, err := resolver.NewResolverFromAddress(gossipBS)
		if err != nil {
			t.Fatalf("bad gossip address %s: %s", gossipBS, err)
		}
		g.SetResolvers([]resolver.Resolver{r})
		g.Start(ln.Addr())
	}
	ctx.Gossip = g
	retryOpts := base.DefaultRetryOptions()
	retryOpts.Closer = stopper.ShouldQuiesce()
	distSender := kv.NewDistSender(&kv.DistSenderConfig{
		Clock:           ctx.Clock,
		RPCContext:      nodeRPCContext,
		RPCRetryOptions: &retryOpts,
	}, g)
	ctx.Ctx = tracing.WithTracer(context.Background(), tracing.NewTracer())
	sender := kv.NewTxnCoordSender(ctx.Ctx, distSender, ctx.Clock, false, stopper,
		kv.MakeTxnMetrics())
	ctx.DB = client.NewDB(sender)
	ctx.Transport = storage.NewDummyRaftTransport()
	node := NewNode(ctx, status.NewMetricsRecorder(ctx.Clock), metric.NewRegistry(), stopper,
		kv.MakeTxnMetrics(), sql.MakeEventLogger(nil))
	roachpb.RegisterInternalServer(grpcServer, node)
	return grpcServer, ln.Addr(), ctx.Clock, node, stopper
}
Пример #4
0
// AddNodeWithoutGossip registers a node with the cluster. Nodes must
// be added before they can be used in other methods of
// raftTransportTestContext. Unless you are testing the effects of
// delaying gossip, use AddNode instead.
func (rttc *raftTransportTestContext) AddNodeWithoutGossip(
	nodeID roachpb.NodeID,
) (*storage.RaftTransport, net.Addr) {
	grpcServer := rpc.NewServer(rttc.nodeRPCContext)
	ln, err := netutil.ListenAndServeGRPC(rttc.stopper, grpcServer, util.TestAddr)
	if err != nil {
		rttc.t.Fatal(err)
	}
	transport := storage.NewRaftTransport(storage.GossipAddressResolver(rttc.gossip),
		grpcServer, rttc.nodeRPCContext)
	rttc.transports[nodeID] = transport
	return transport, ln.Addr()
}
Пример #5
0
func newTestServer(t *testing.T, ctx *Context, manual bool) (*grpc.Server, net.Listener) {
	tlsConfig, err := ctx.GetServerTLSConfig()
	if err != nil {
		t.Fatal(err)
	}
	s := grpc.NewServer(grpc.Creds(credentials.NewTLS(tlsConfig)))

	ln, err := netutil.ListenAndServeGRPC(ctx.Stopper, s, util.TestAddr)
	if err != nil {
		t.Fatal(err)
	}

	return s, ln
}
Пример #6
0
// TestClientRegisterInitNodeID verifies two client's gossip request with NodeID 0.
func TestClientRegisterWithInitNodeID(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()

	// Create three gossip nodes, and connect to the first with NodeID 0.
	var g []*Gossip
	var gossipAddr string
	for i := 0; i < 3; i++ {
		RPCContext := rpc.NewContext(&base.Context{Insecure: true}, nil, stopper)

		server := rpc.NewServer(RPCContext)
		ln, err := netutil.ListenAndServeGRPC(stopper, server, util.TestAddr)
		if err != nil {
			t.Fatal(err)
		}

		// Connect to the first gossip node.
		if gossipAddr == "" {
			gossipAddr = ln.Addr().String()
		}

		var resolvers []resolver.Resolver
		resolver, err := resolver.NewResolver(RPCContext.Context, gossipAddr)
		if err != nil {
			t.Fatal(err)
		}
		resolvers = append(resolvers, resolver)
		gnode := New(RPCContext, server, resolvers, stopper, metric.NewRegistry())
		// node ID must be non-zero
		gnode.SetNodeID(roachpb.NodeID(i + 1))
		g = append(g, gnode)
		gnode.Start(ln.Addr())
	}

	util.SucceedsSoon(t, func() error {
		// The first gossip node should have two gossip client address
		// in nodeMap if these three gossip nodes registered success.
		g[0].mu.Lock()
		defer g[0].mu.Unlock()
		if a, e := len(g[0].nodeMap), 2; a != e {
			return errors.Errorf("expected %s to contain %d nodes, got %d", g[0].nodeMap, e, a)
		}
		return nil
	})
}
Пример #7
0
// startGossip creates and starts a gossip instance.
func startGossip(nodeID roachpb.NodeID, stopper *stop.Stopper, t *testing.T) *Gossip {
	rpcContext := rpc.NewContext(&base.Context{Insecure: true}, nil, stopper)

	server := rpc.NewServer(rpcContext)
	ln, err := netutil.ListenAndServeGRPC(stopper, server, util.TestAddr)
	if err != nil {
		t.Fatal(err)
	}
	addr := ln.Addr()
	g := New(rpcContext, nil, stopper)
	g.SetNodeID(nodeID)
	if err := g.SetNodeDescriptor(&roachpb.NodeDescriptor{
		NodeID:  nodeID,
		Address: util.MakeUnresolvedAddr(addr.Network(), addr.String()),
	}); err != nil {
		t.Fatal(err)
	}
	g.start(server, addr)
	time.Sleep(time.Millisecond)
	return g
}
Пример #8
0
func TestSendAndReceive(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()
	nodeRPCContext := rpc.NewContext(testutils.NewNodeTestBaseContext(), nil, stopper)
	g := gossip.New(nodeRPCContext, nil, stopper)
	g.SetNodeID(roachpb.NodeID(1))

	// Create several servers, each of which has two stores (A raft
	// node ID addresses a store). Node 1 has stores 1 and 2, node 2 has
	// stores 3 and 4, etc.
	//
	// We suppose that range 1 is replicated across the odd-numbered
	// stores in reverse order to ensure that the various IDs are not
	// equal: replica 1 is store 5, replica 2 is store 3, and replica 3
	// is store 1.
	const numNodes = 3
	const storesPerNode = 2
	nextNodeID := roachpb.NodeID(2)
	nextStoreID := roachpb.StoreID(2)

	// Per-node state.
	transports := map[roachpb.NodeID]*storage.RaftTransport{}

	// Per-store state.
	storeNodes := map[roachpb.StoreID]roachpb.NodeID{}
	channels := map[roachpb.StoreID]channelServer{}
	replicaIDs := map[roachpb.StoreID]roachpb.ReplicaID{
		1: 3,
		3: 2,
		5: 1,
	}

	messageTypes := []raftpb.MessageType{
		raftpb.MsgSnap,
		raftpb.MsgHeartbeat,
	}

	for nodeIndex := 0; nodeIndex < numNodes; nodeIndex++ {
		nodeID := nextNodeID
		nextNodeID++
		grpcServer := rpc.NewServer(nodeRPCContext)
		ln, err := netutil.ListenAndServeGRPC(stopper, grpcServer, util.TestAddr)
		if err != nil {
			t.Fatal(err)
		}

		addr := ln.Addr()
		// Have to call g.SetNodeID before call g.AddInfo.
		g.ResetNodeID(roachpb.NodeID(nodeID))
		if err := g.AddInfoProto(gossip.MakeNodeIDKey(nodeID),
			&roachpb.NodeDescriptor{
				Address: util.MakeUnresolvedAddr(addr.Network(), addr.String()),
			},
			time.Hour); err != nil {
			t.Fatal(err)
		}

		transports[nodeID] = storage.NewRaftTransport(storage.GossipAddressResolver(g), grpcServer, nodeRPCContext)
		// This channel is normally unbuffered, but it is also normally serviced by
		// the raft goroutine. Since we don't have that goroutine in this test, we
		// must buffer the channel to prevent snapshots from blocking while we
		// iterate through the recipients in an order that may differ from the
		// sending order.
		sendersPerNode := storesPerNode
		recipientsPerSender := numNodes * storesPerNode
		outboundSnapshotsPerNode := sendersPerNode * recipientsPerSender
		transports[nodeID].SnapshotStatusChan = make(chan storage.RaftSnapshotStatus, outboundSnapshotsPerNode)

		for storeIndex := 0; storeIndex < storesPerNode; storeIndex++ {
			storeID := nextStoreID
			nextStoreID++

			storeNodes[storeID] = nodeID

			sendersPerRecipient := numNodes * storesPerNode
			inboundMessagesPerStore := sendersPerRecipient * len(messageTypes)
			channels[storeID] = newChannelServer(inboundMessagesPerStore, 0)
			transports[nodeID].Listen(storeID, channels[storeID].RaftMessage)
		}
	}

	messageTypeCounts := make(map[roachpb.StoreID]map[raftpb.MessageType]int)

	// Each store sends one snapshot and one heartbeat to each store, including
	// itself.
	for toStoreID, toNodeID := range storeNodes {
		if _, ok := messageTypeCounts[toStoreID]; !ok {
			messageTypeCounts[toStoreID] = make(map[raftpb.MessageType]int)
		}

		for fromStoreID, fromNodeID := range storeNodes {
			baseReq := storage.RaftMessageRequest{
				RangeID: 1,
				Message: raftpb.Message{
					From: uint64(fromStoreID),
					To:   uint64(toStoreID),
				},
				FromReplica: roachpb.ReplicaDescriptor{
					NodeID:  fromNodeID,
					StoreID: fromStoreID,
				},
				ToReplica: roachpb.ReplicaDescriptor{
					NodeID:  toNodeID,
					StoreID: toStoreID,
				},
			}

			for _, messageType := range messageTypes {
				req := baseReq
				req.Message.Type = messageType

				if !transports[fromNodeID].MakeSender(func(err error, _ roachpb.ReplicaDescriptor) {
					if err != nil && !grpcutil.IsClosedConnection(err) {
						panic(err)
					}
				}).SendAsync(&req) {
					t.Errorf("unable to send %s from %d to %d", req.Message.Type, fromNodeID, toNodeID)
				}
				messageTypeCounts[toStoreID][req.Message.Type]++
			}
		}
	}

	// Read all the messages from the channels. Note that the transport
	// does not guarantee in-order delivery between independent
	// transports, so we just verify that the right number of messages
	// end up in each channel.
	for toStoreID := range storeNodes {
		func() {
			for len(messageTypeCounts[toStoreID]) > 0 {
				req := <-channels[toStoreID].ch
				if req.Message.To != uint64(toStoreID) {
					t.Errorf("got unexpected message %v on channel %d", req, toStoreID)
				}

				// Each MsgSnap should have a corresponding entry on the
				// sender's SnapshotStatusChan.
				if req.Message.Type == raftpb.MsgSnap {
					st := <-transports[req.FromReplica.NodeID].SnapshotStatusChan
					if st.Err != nil {
						t.Errorf("unexpected error sending snapshot: %s", st.Err)
					}
				}

				if typeCounts, ok := messageTypeCounts[toStoreID]; ok {
					if _, ok := typeCounts[req.Message.Type]; ok {
						typeCounts[req.Message.Type]--
						if typeCounts[req.Message.Type] == 0 {
							delete(typeCounts, req.Message.Type)
						}
					} else {
						t.Errorf("expected %v to have key %v, but it did not", typeCounts, req.Message.Type)
					}
				} else {
					t.Errorf("expected %v to have key %v, but it did not", messageTypeCounts, toStoreID)
				}
			}

			delete(messageTypeCounts, toStoreID)
		}()

		select {
		case req := <-channels[toStoreID].ch:
			t.Errorf("got unexpected message %v on channel %d", req, toStoreID)
		case <-time.After(100 * time.Millisecond):
		}
	}

	if len(messageTypeCounts) > 0 {
		t.Errorf("remaining messages expected: %v", messageTypeCounts)
	}

	// Real raft messages have different node/store/replica IDs.
	// Send a message from replica 2 (on store 3, node 2) to replica 1 (on store 5, node 3)
	fromStoreID := roachpb.StoreID(3)
	toStoreID := roachpb.StoreID(5)
	expReq := &storage.RaftMessageRequest{
		RangeID: 1,
		Message: raftpb.Message{
			Type: raftpb.MsgApp,
			From: uint64(replicaIDs[fromStoreID]),
			To:   uint64(replicaIDs[toStoreID]),
		},
		FromReplica: roachpb.ReplicaDescriptor{
			NodeID:    storeNodes[fromStoreID],
			StoreID:   fromStoreID,
			ReplicaID: replicaIDs[fromStoreID],
		},
		ToReplica: roachpb.ReplicaDescriptor{
			NodeID:    storeNodes[toStoreID],
			StoreID:   toStoreID,
			ReplicaID: replicaIDs[toStoreID],
		},
	}
	if !transports[storeNodes[fromStoreID]].MakeSender(func(err error, _ roachpb.ReplicaDescriptor) {
		if err != nil && !grpcutil.IsClosedConnection(err) {
			panic(err)
		}
	}).SendAsync(expReq) {
		t.Errorf("unable to send message from %d to %d", fromStoreID, toStoreID)
	}
	if req := <-channels[toStoreID].ch; !proto.Equal(req, expReq) {
		t.Errorf("got unexpected message %v on channel %d", req, toStoreID)
	}

	select {
	case req := <-channels[toStoreID].ch:
		t.Errorf("got unexpected message %v on channel %d", req, toStoreID)
	default:
	}
}
Пример #9
0
// TestInOrderDelivery verifies that for a given pair of nodes, raft
// messages are delivered in order.
func TestInOrderDelivery(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()
	nodeRPCContext := rpc.NewContext(testutils.NewNodeTestBaseContext(), nil, stopper)
	g := gossip.New(nodeRPCContext, nil, stopper)

	grpcServer := rpc.NewServer(nodeRPCContext)
	ln, err := netutil.ListenAndServeGRPC(stopper, grpcServer, util.TestAddr)
	if err != nil {
		t.Fatal(err)
	}

	const numMessages = 100
	nodeID := roachpb.NodeID(roachpb.NodeID(2))
	serverTransport := storage.NewRaftTransport(storage.GossipAddressResolver(g), grpcServer, nodeRPCContext)
	serverChannel := newChannelServer(numMessages, 10*time.Millisecond)
	serverTransport.Listen(roachpb.StoreID(nodeID), serverChannel.RaftMessage)
	addr := ln.Addr()
	// Have to set gossip.NodeID before calling gossip.AddInfoXXX.
	g.SetNodeID(nodeID)
	if err := g.AddInfoProto(gossip.MakeNodeIDKey(nodeID),
		&roachpb.NodeDescriptor{
			Address: util.MakeUnresolvedAddr(addr.Network(), addr.String()),
		},
		time.Hour); err != nil {
		t.Fatal(err)
	}

	clientNodeID := roachpb.NodeID(2)
	clientTransport := storage.NewRaftTransport(storage.GossipAddressResolver(g), nil, nodeRPCContext)

	for i := 0; i < numMessages; i++ {
		req := &storage.RaftMessageRequest{
			RangeID: 1,
			Message: raftpb.Message{
				To:     uint64(nodeID),
				From:   uint64(clientNodeID),
				Commit: uint64(i),
			},
			ToReplica: roachpb.ReplicaDescriptor{
				NodeID:    nodeID,
				StoreID:   roachpb.StoreID(nodeID),
				ReplicaID: roachpb.ReplicaID(nodeID),
			},
			FromReplica: roachpb.ReplicaDescriptor{
				NodeID:    clientNodeID,
				StoreID:   roachpb.StoreID(clientNodeID),
				ReplicaID: roachpb.ReplicaID(clientNodeID),
			},
		}
		if !clientTransport.MakeSender(func(err error, _ roachpb.ReplicaDescriptor) {
			if err != nil && !grpcutil.IsClosedConnection(err) {
				panic(err)
			}
		}).SendAsync(req) {
			t.Errorf("failed to send message %d", i)
		}
	}

	for i := 0; i < numMessages; i++ {
		req := <-serverChannel.ch
		if req.Message.Commit != uint64(i) {
			t.Errorf("messages out of order: got %d while expecting %d", req.Message.Commit, i)
		}
	}
}