Пример #1
0
// NewTxnCoordSender creates a new TxnCoordSender for use from a KV
// distributed DB instance.
// ctx is the base context and is used for logs and traces when there isn't a
// more specific context available; it must have a Tracer set.
func NewTxnCoordSender(
	ctx context.Context,
	wrapped client.Sender,
	clock *hlc.Clock,
	linearizable bool,
	stopper *stop.Stopper,
	txnMetrics TxnMetrics,
) *TxnCoordSender {
	if ctx == nil || tracing.TracerFromCtx(ctx) == nil {
		panic("ctx with tracer must be supplied")
	}
	if ctx.Done() != nil {
		panic("context with cancel or deadline")
	}
	tc := &TxnCoordSender{
		ctx:               ctx,
		wrapped:           wrapped,
		clock:             clock,
		heartbeatInterval: base.DefaultHeartbeatInterval,
		clientTimeout:     defaultClientTimeout,
		txns:              map[uuid.UUID]*txnMetadata{},
		linearizable:      linearizable,
		stopper:           stopper,
		metrics:           txnMetrics,
	}

	tc.stopper.RunWorker(tc.startStats)
	return tc
}
Пример #2
0
// heartbeatLoop periodically sends a HeartbeatTxn RPC to an extant transaction,
// stopping in the event the transaction is aborted or committed after
// attempting to resolve the intents. When the heartbeat stops, the transaction
// is unregistered from the coordinator.
//
// TODO(dan): The Context we use for this is currently the one from the first
// request in a Txn, but the semantics of this aren't good. Each context has its
// own associated lifetime and we're ignoring all but the first. It happens now
// that we pass the same one in every request, but it's brittle to rely on this
// forever.
// TODO(wiz): Update (*DBServer).Batch to not use context.TODO().
func (tc *TxnCoordSender) heartbeatLoop(ctx context.Context, txnID uuid.UUID) {
	var tickChan <-chan time.Time
	{
		ticker := time.NewTicker(tc.heartbeatInterval)
		tickChan = ticker.C
		defer ticker.Stop()
	}
	defer func() {
		tc.Lock()
		duration, restarts, status := tc.unregisterTxnLocked(txnID)
		tc.Unlock()
		tc.updateStats(duration, restarts, status, false)
	}()

	var closer <-chan struct{}
	// TODO(tschottdorf): this should join to the trace of the request
	// which starts this goroutine.
	sp := tracing.TracerFromCtx(tc.ctx).StartSpan(opHeartbeatLoop)
	defer sp.Finish()
	ctx = opentracing.ContextWithSpan(ctx, sp)

	{
		tc.Lock()
		txnMeta := tc.txns[txnID] // do not leak to outer scope
		closer = txnMeta.txnEnd
		tc.Unlock()
	}
	if closer == nil {
		// Avoid race in which a Txn is cleaned up before the heartbeat
		// goroutine gets a chance to start.
		return
	}
	// Loop with ticker for periodic heartbeats.
	for {
		select {
		case <-tickChan:
			if !tc.heartbeat(ctx, txnID) {
				return
			}
		case <-closer:
			// Transaction finished normally.
			return
		case <-ctx.Done():
			// Note that if ctx is not cancellable, then ctx.Done() returns a nil
			// channel, which blocks forever. In this case, the heartbeat loop is
			// responsible for timing out transactions. If ctx.Done() is not nil, then
			// then heartbeat loop ignores the timeout check and this case is
			// responsible for client timeouts.
			tc.tryAsyncAbort(txnID)
			return
		case <-tc.stopper.ShouldQuiesce():
			return
		}
	}
}
Пример #3
0
// sendChunk is in charge of sending an "admissible" piece of batch, i.e. one
// which doesn't need to be subdivided further before going to a range (so no
// mixing of forward and reverse scans, etc). The parameters and return values
// correspond to client.Sender with the exception of the returned boolean,
// which is true when indicating that the caller should retry but needs to send
// EndTransaction in a separate request.
func (ds *DistSender) sendChunk(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error, bool) {
	isReverse := ba.IsReverse()

	// TODO(radu): when contexts are properly plumbed, we should be able to get
	// the tracer from ctx, not from the DistSender.
	ctx, cleanup := tracing.EnsureContext(ctx, tracing.TracerFromCtx(ds.Ctx))
	defer cleanup()

	// The minimal key range encompassing all requests contained within.
	// Local addressing has already been resolved.
	// TODO(tschottdorf): consider rudimentary validation of the batch here
	// (for example, non-range requests with EndKey, or empty key ranges).
	rs, err := keys.Range(ba)
	if err != nil {
		return nil, roachpb.NewError(err), false
	}
	var br *roachpb.BatchResponse

	// Send the request to one range per iteration.
	for {
		// Increase the sequence counter only once before sending RPCs to
		// the ranges involved in this chunk of the batch (as opposed to for
		// each RPC individually). On RPC errors, there's no guarantee that
		// the request hasn't made its way to the target regardless of the
		// error; we'd like the second execution to be caught by the sequence
		// cache if that happens. There is a small chance that that we address
		// a range twice in this chunk (stale/suboptimal descriptors due to
		// splits/merges) which leads to a transaction retry.
		// TODO(tschottdorf): it's possible that if we don't evict from the
		//   cache we could be in for a busy loop.
		ba.SetNewRequest()

		var curReply *roachpb.BatchResponse
		var desc *roachpb.RangeDescriptor
		var evictToken *evictionToken
		var needAnother bool
		var pErr *roachpb.Error
		var finished bool
		var numAttempts int
		for r := retry.StartWithCtx(ctx, ds.rpcRetryOptions); r.Next(); {
			numAttempts++
			{
				const magicLogCurAttempt = 20

				var seq int32
				if ba.Txn != nil {
					seq = ba.Txn.Sequence
				}

				if numAttempts%magicLogCurAttempt == 0 || seq%magicLogCurAttempt == 0 {
					// Log a message if a request appears to get stuck for a long
					// time or, potentially, forever. See #8975.
					// The local counter captures this loop here; the Sequence number
					// should capture anything higher up (as it needs to be
					// incremented every time this method is called).
					log.Warningf(
						ctx,
						"%d retries for an RPC at sequence %d, last error was: %s, remaining key ranges %s: %s",
						numAttempts, seq, pErr, rs, ba,
					)
				}
			}
			// Get range descriptor (or, when spanning range, descriptors). Our
			// error handling below may clear them on certain errors, so we
			// refresh (likely from the cache) on every retry.
			log.Trace(ctx, "meta descriptor lookup")
			var err error
			desc, needAnother, evictToken, err = ds.getDescriptors(ctx, rs, evictToken, isReverse)

			// getDescriptors may fail retryably if, for example, the first
			// range isn't available via Gossip. Assume that all errors at
			// this level are retryable. Non-retryable errors would be for
			// things like malformed requests which we should have checked
			// for before reaching this point.
			if err != nil {
				log.Trace(ctx, "range descriptor lookup failed: "+err.Error())
				if log.V(1) {
					log.Warning(ctx, err)
				}
				pErr = roachpb.NewError(err)
				continue
			}

			if needAnother && br == nil {
				// TODO(tschottdorf): we should have a mechanism for discovering
				// range merges (descriptor staleness will mostly go unnoticed),
				// or we'll be turning single-range queries into multi-range
				// queries for no good reason.

				// If there's no transaction and op spans ranges, possibly
				// re-run as part of a transaction for consistency. The
				// case where we don't need to re-run is if the read
				// consistency is not required.
				if ba.Txn == nil && ba.IsPossibleTransaction() &&
					ba.ReadConsistency != roachpb.INCONSISTENT {
					return nil, roachpb.NewError(&roachpb.OpRequiresTxnError{}), false
				}
				// If the request is more than but ends with EndTransaction, we
				// want the caller to come again with the EndTransaction in an
				// extra call.
				if l := len(ba.Requests) - 1; l > 0 && ba.Requests[l].GetInner().Method() == roachpb.EndTransaction {
					return nil, roachpb.NewError(errors.New("cannot send 1PC txn to multiple ranges")), true /* shouldSplitET */
				}
			}

			// It's possible that the returned descriptor misses parts of the
			// keys it's supposed to scan after it's truncated to match the
			// descriptor. Example revscan [a,g), first desc lookup for "g"
			// returns descriptor [c,d) -> [d,g) is never scanned.
			// We evict and retry in such a case.
			includesFrontOfCurSpan := func(rd *roachpb.RangeDescriptor) bool {
				if isReverse {
					return desc.ContainsExclusiveEndKey(rs.EndKey)
				}
				return desc.ContainsKey(rs.Key)
			}
			if !includesFrontOfCurSpan(desc) {
				if err := evictToken.Evict(ctx); err != nil {
					return nil, roachpb.NewError(err), false
				}
				// On addressing errors, don't backoff; retry immediately.
				r.Reset()
				continue
			}

			curReply, pErr = func() (*roachpb.BatchResponse, *roachpb.Error) {
				// Truncate the request to our current key range.
				intersected, iErr := rs.Intersect(desc)
				if iErr != nil {
					return nil, roachpb.NewError(iErr)
				}
				truncBA, numActive, trErr := truncate(ba, intersected)
				if numActive == 0 && trErr == nil {
					// This shouldn't happen in the wild, but some tests
					// exercise it.
					return nil, roachpb.NewErrorf("truncation resulted in empty batch on [%s,%s): %s",
						rs.Key, rs.EndKey, ba)
				}
				if trErr != nil {
					return nil, roachpb.NewError(trErr)
				}
				return ds.sendSingleRange(ctx, truncBA, desc)
			}()
			// If sending succeeded, break this loop.
			if pErr == nil {
				finished = true
				break
			}

			log.VTracef(1, ctx, "reply error %s: %s", ba, pErr)

			// Error handling: If the error indicates that our range
			// descriptor is out of date, evict it from the cache and try
			// again. Errors that apply only to a single replica were
			// handled in send().
			//
			// TODO(bdarnell): Don't retry endlessly. If we fail twice in a
			// row and the range descriptor hasn't changed, return the error
			// to our caller.
			switch tErr := pErr.GetDetail().(type) {
			case *roachpb.SendError:
				// We've tried all the replicas without success. Either
				// they're all down, or we're using an out-of-date range
				// descriptor. Invalidate the cache and try again with the new
				// metadata.
				if err := evictToken.Evict(ctx); err != nil {
					return nil, roachpb.NewError(err), false
				}
				continue
			case *roachpb.RangeKeyMismatchError:
				// Range descriptor might be out of date - evict it. This is
				// likely the result of a range split. If we have new range
				// descriptors, insert them instead as long as they are different
				// from the last descriptor to avoid endless loops.
				var replacements []roachpb.RangeDescriptor
				different := func(rd *roachpb.RangeDescriptor) bool {
					return !desc.RSpan().Equal(rd.RSpan())
				}
				if tErr.MismatchedRange != nil && different(tErr.MismatchedRange) {
					replacements = append(replacements, *tErr.MismatchedRange)
				}
				if tErr.SuggestedRange != nil && different(tErr.SuggestedRange) {
					if includesFrontOfCurSpan(tErr.SuggestedRange) {
						replacements = append(replacements, *tErr.SuggestedRange)

					}
				}
				// Same as Evict() if replacements is empty.
				if err := evictToken.EvictAndReplace(ctx, replacements...); err != nil {
					return nil, roachpb.NewError(err), false
				}
				// On addressing errors, don't backoff; retry immediately.
				r.Reset()
				if log.V(1) {
					log.Warning(ctx, tErr)
				}
				continue
			}
			break
		}

		// Immediately return if querying a range failed non-retryably.
		if pErr != nil {
			return nil, pErr, false
		} else if !finished {
			select {
			case <-ds.rpcRetryOptions.Closer:
				return nil, roachpb.NewError(&roachpb.NodeUnavailableError{}), false
			case <-ctx.Done():
				return nil, roachpb.NewError(ctx.Err()), false
			default:
				log.Fatal(ctx, "exited retry loop with nil error but finished=false")
			}
		}

		ba.UpdateTxn(curReply.Txn)

		if br == nil {
			// First response from a Range.
			br = curReply
		} else {
			// This was the second or later call in a cross-Range request.
			// Combine the new response with the existing one.
			if err := br.Combine(curReply); err != nil {
				return nil, roachpb.NewError(err), false
			}
		}

		if isReverse {
			// In next iteration, query previous range.
			// We use the StartKey of the current descriptor as opposed to the
			// EndKey of the previous one since that doesn't have bugs when
			// stale descriptors come into play.
			rs.EndKey, err = prev(ba, desc.StartKey)
		} else {
			// In next iteration, query next range.
			// It's important that we use the EndKey of the current descriptor
			// as opposed to the StartKey of the next one: if the former is stale,
			// it's possible that the next range has since merged the subsequent
			// one, and unless both descriptors are stale, the next descriptor's
			// StartKey would move us to the beginning of the current range,
			// resulting in a duplicate scan.
			rs.Key, err = next(ba, desc.EndKey)
		}
		if err != nil {
			return nil, roachpb.NewError(err), false
		}

		if ba.MaxSpanRequestKeys > 0 {
			// Count how many results we received.
			var numResults int64
			for _, resp := range curReply.Responses {
				numResults += resp.GetInner().Header().NumKeys
			}
			if numResults > ba.MaxSpanRequestKeys {
				panic(fmt.Sprintf("received %d results, limit was %d", numResults, ba.MaxSpanRequestKeys))
			}
			ba.MaxSpanRequestKeys -= numResults
			if ba.MaxSpanRequestKeys == 0 {
				// prepare the batch response after meeting the max key limit.
				fillSkippedResponses(ba, br, rs)
				// done, exit loop.
				return br, nil, false
			}
		}

		// If this was the last range accessed by this call, exit loop.
		if !needAnother {
			return br, nil, false
		}

		// key cannot be less that the end key.
		if !rs.Key.Less(rs.EndKey) {
			panic(fmt.Sprintf("start key %s is less than %s", rs.Key, rs.EndKey))
		}

		log.Trace(ctx, "querying next range")
	}
}
Пример #4
0
// NewDistSender returns a batch.Sender instance which connects to the
// Cockroach cluster via the supplied gossip instance. Supplying a
// DistSenderContext or the fields within is optional. For omitted values, sane
// defaults will be used.
func NewDistSender(cfg *DistSenderConfig, g *gossip.Gossip) *DistSender {
	if cfg == nil {
		cfg = &DistSenderConfig{}
	}

	ds := &DistSender{gossip: g}

	ds.Ctx = cfg.Ctx
	if ds.Ctx == nil {
		ds.Ctx = context.Background()
	}

	if ds.Ctx.Done() != nil {
		panic("context with cancel or deadline")
	}

	if tracing.TracerFromCtx(ds.Ctx) == nil {
		ds.Ctx = tracing.WithTracer(ds.Ctx, tracing.NewTracer())
	}

	ds.clock = cfg.Clock
	if ds.clock == nil {
		ds.clock = hlc.NewClock(hlc.UnixNano)
	}

	if cfg.nodeDescriptor != nil {
		atomic.StorePointer(&ds.nodeDescriptor, unsafe.Pointer(cfg.nodeDescriptor))
	}
	rcSize := cfg.RangeDescriptorCacheSize
	if rcSize <= 0 {
		rcSize = defaultRangeDescriptorCacheSize
	}
	rdb := cfg.RangeDescriptorDB
	if rdb == nil {
		rdb = ds
	}
	ds.rangeCache = newRangeDescriptorCache(rdb, int(rcSize))
	lcSize := cfg.LeaseHolderCacheSize
	if lcSize <= 0 {
		lcSize = defaultLeaseHolderCacheSize
	}
	ds.leaseHolderCache = newLeaseHolderCache(int(lcSize))
	if cfg.RangeLookupMaxRanges <= 0 {
		ds.rangeLookupMaxRanges = defaultRangeLookupMaxRanges
	}
	if cfg.TransportFactory != nil {
		ds.transportFactory = cfg.TransportFactory
	}
	ds.rpcRetryOptions = base.DefaultRetryOptions()
	if cfg.RPCRetryOptions != nil {
		ds.rpcRetryOptions = *cfg.RPCRetryOptions
	}
	if cfg.RPCContext != nil {
		ds.rpcContext = cfg.RPCContext
		if ds.rpcRetryOptions.Closer == nil {
			ds.rpcRetryOptions.Closer = ds.rpcContext.Stopper.ShouldQuiesce()
		}
	}
	if cfg.SendNextTimeout != 0 {
		ds.sendNextTimeout = cfg.SendNextTimeout
	} else {
		ds.sendNextTimeout = defaultSendNextTimeout
	}

	if g != nil {
		g.RegisterCallback(gossip.KeyFirstRangeDescriptor,
			func(_ string, value roachpb.Value) {
				if log.V(1) {
					var desc roachpb.RangeDescriptor
					if err := value.GetProto(&desc); err != nil {
						log.Errorf(ds.Ctx, "unable to parse gossipped first range descriptor: %s", err)
					} else {
						log.Infof(ds.Ctx,
							"gossipped first range descriptor: %+v", desc.Replicas)
					}
				}
				err := ds.rangeCache.EvictCachedRangeDescriptor(roachpb.RKeyMin, nil, false)
				if err != nil {
					log.Warningf(ds.Ctx, "failed to evict first range descriptor: %s", err)
				}
			})
	}
	return ds
}
Пример #5
0
// Send implements the batch.Sender interface. If the request is part of a
// transaction, the TxnCoordSender adds the transaction to a map of active
// transactions and begins heartbeating it. Every subsequent request for the
// same transaction updates the lastUpdate timestamp to prevent live
// transactions from being considered abandoned and garbage collected.
// Read/write mutating requests have their key or key range added to the
// transaction's interval tree of key ranges for eventual cleanup via resolved
// write intents; they're tagged to an outgoing EndTransaction request, with
// the receiving replica in charge of resolving them.
func (tc *TxnCoordSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
	{
		// Start new or pick up active trace and embed its trace metadata into
		// header for use by RPC recipients. From here on, there's always an active
		// Trace, though its overhead is small unless it's sampled.
		sp := opentracing.SpanFromContext(ctx)
		// TODO(radu): once contexts are plumbed correctly, we should use the Tracer
		// from ctx.
		tracer := tracing.TracerFromCtx(tc.ctx)
		if sp == nil {
			sp = tracer.StartSpan(opTxnCoordSender)
			defer sp.Finish()
			ctx = opentracing.ContextWithSpan(ctx, sp)
		}
		// TODO(tschottdorf): To get rid of the spurious alloc below we need to
		// implement the carrier interface on ba.Header or make Span non-nullable,
		// both of which force all of ba on the Heap. It's already there, so may
		// not be a big deal, but ba should live on the stack. Also not easy to use
		// a buffer pool here since anything that goes into the RPC layer could be
		// used by goroutines we didn't wait for.
		if ba.Header.Trace == nil {
			ba.Header.Trace = &tracing.Span{}
		} else {
			// We didn't make this object but are about to mutate it, so we
			// have to take a copy - the original might already have been
			// passed to the RPC layer.
			ba.Header.Trace = protoutil.Clone(ba.Header.Trace).(*tracing.Span)
		}
		if err := tracer.Inject(sp.Context(), basictracer.Delegator, ba.Trace); err != nil {
			return nil, roachpb.NewError(err)
		}
	}

	startNS := tc.clock.PhysicalNow()

	if ba.Txn != nil {
		// If this request is part of a transaction...
		if err := tc.maybeBeginTxn(&ba); err != nil {
			return nil, roachpb.NewError(err)
		}
		var et *roachpb.EndTransactionRequest
		var hasET bool
		{
			var rArgs roachpb.Request
			rArgs, hasET = ba.GetArg(roachpb.EndTransaction)
			if hasET {
				et = rArgs.(*roachpb.EndTransactionRequest)
				if len(et.Key) != 0 {
					return nil, roachpb.NewErrorf("EndTransaction must not have a Key set")
				}
				et.Key = ba.Txn.Key
				if len(et.IntentSpans) > 0 {
					// TODO(tschottdorf): it may be useful to allow this later.
					// That would be part of a possible plan to allow txns which
					// write on multiple coordinators.
					return nil, roachpb.NewErrorf("client must not pass intents to EndTransaction")
				}
			}
		}

		if pErr := func() *roachpb.Error {
			tc.Lock()
			defer tc.Unlock()
			if pErr := tc.maybeRejectClientLocked(ctx, *ba.Txn); pErr != nil {
				return pErr
			}

			if !hasET {
				return nil
			}
			// Everything below is carried out only when trying to commit.

			// Populate et.IntentSpans, taking into account both any existing
			// and new writes, and taking care to perform proper deduplication.
			txnMeta := tc.txns[*ba.Txn.ID]
			distinctSpans := true
			if txnMeta != nil {
				et.IntentSpans = txnMeta.keys
				// Defensively set distinctSpans to false if we had any previous
				// requests in this transaction. This effectively limits the distinct
				// spans optimization to 1pc transactions.
				distinctSpans = len(txnMeta.keys) == 0
			}
			ba.IntentSpanIterate(func(key, endKey roachpb.Key) {
				et.IntentSpans = append(et.IntentSpans, roachpb.Span{
					Key:    key,
					EndKey: endKey,
				})
			})
			// TODO(peter): Populate DistinctSpans on all batches, not just batches
			// which contain an EndTransactionRequest.
			var distinct bool
			// The request might already be used by an outgoing goroutine, so
			// we can't safely mutate anything in-place (as MergeSpans does).
			et.IntentSpans = append([]roachpb.Span(nil), et.IntentSpans...)
			et.IntentSpans, distinct = roachpb.MergeSpans(et.IntentSpans)
			ba.Header.DistinctSpans = distinct && distinctSpans
			if len(et.IntentSpans) == 0 {
				// If there aren't any intents, then there's factually no
				// transaction to end. Read-only txns have all of their state
				// in the client.
				return roachpb.NewErrorf("cannot commit a read-only transaction")
			}
			if txnMeta != nil {
				txnMeta.keys = et.IntentSpans
			}
			return nil
		}(); pErr != nil {
			return nil, pErr
		}

		if hasET && log.V(1) {
			for _, intent := range et.IntentSpans {
				log.Tracef(ctx, "intent: [%s,%s)", intent.Key, intent.EndKey)
			}
		}
	}

	// Send the command through wrapped sender, taking appropriate measures
	// on error.
	var br *roachpb.BatchResponse
	{
		var pErr *roachpb.Error
		br, pErr = tc.wrapped.Send(ctx, ba)

		if _, ok := pErr.GetDetail().(*roachpb.OpRequiresTxnError); ok {
			// TODO(tschottdorf): needs to keep the trace.
			br, pErr = tc.resendWithTxn(ba)
		}

		if pErr = tc.updateState(startNS, ctx, ba, br, pErr); pErr != nil {
			log.Tracef(ctx, "error: %s", pErr)
			return nil, pErr
		}
	}

	if br.Txn == nil {
		return br, nil
	}

	if _, ok := ba.GetArg(roachpb.EndTransaction); !ok {
		return br, nil
	}
	// If the --linearizable flag is set, we want to make sure that
	// all the clocks in the system are past the commit timestamp
	// of the transaction. This is guaranteed if either
	// - the commit timestamp is MaxOffset behind startNS
	// - MaxOffset ns were spent in this function
	// when returning to the client. Below we choose the option
	// that involves less waiting, which is likely the first one
	// unless a transaction commits with an odd timestamp.
	if tsNS := br.Txn.Timestamp.WallTime; startNS > tsNS {
		startNS = tsNS
	}
	sleepNS := tc.clock.MaxOffset() -
		time.Duration(tc.clock.PhysicalNow()-startNS)
	if tc.linearizable && sleepNS > 0 {
		defer func() {
			if log.V(1) {
				log.Infof(ctx, "%v: waiting %s on EndTransaction for linearizability", br.Txn.ID.Short(), util.TruncateDuration(sleepNS, time.Millisecond))
			}
			time.Sleep(sleepNS)
		}()
	}
	if br.Txn.Status != roachpb.PENDING {
		tc.Lock()
		tc.cleanupTxnLocked(ctx, *br.Txn)
		tc.Unlock()
	}
	return br, nil
}
Пример #6
0
// NewServer creates a Server from a server.Context.
func NewServer(srvCtx Context, stopper *stop.Stopper) (*Server, error) {
	if _, err := net.ResolveTCPAddr("tcp", srvCtx.Addr); err != nil {
		return nil, errors.Errorf("unable to resolve RPC address %q: %v", srvCtx.Addr, err)
	}

	if srvCtx.Ctx == nil {
		srvCtx.Ctx = context.Background()
	}
	if srvCtx.Ctx.Done() != nil {
		panic("context with cancel or deadline")
	}
	if tracing.TracerFromCtx(srvCtx.Ctx) == nil {
		// TODO(radu): instead of modifying srvCtx.Ctx, we should have a separate
		// context.Context inside Server. We will need to rename server.Context
		// though.
		srvCtx.Ctx = tracing.WithTracer(srvCtx.Ctx, tracing.NewTracer())
	}

	if srvCtx.Insecure {
		log.Warning(srvCtx.Ctx, "running in insecure mode, this is strongly discouraged. See --insecure.")
	}
	// Try loading the TLS configs before anything else.
	if _, err := srvCtx.GetServerTLSConfig(); err != nil {
		return nil, err
	}
	if _, err := srvCtx.GetClientTLSConfig(); err != nil {
		return nil, err
	}

	s := &Server{
		mux:     http.NewServeMux(),
		clock:   hlc.NewClock(hlc.UnixNano),
		stopper: stopper,
	}
	// Add a dynamic log tag value for the node ID.
	//
	// We need to pass the server's Ctx as a base context for the various server
	// components, but we won't know the node ID until we Start(). At that point
	// it's too late to change the contexts in the components (various background
	// processes will have already started using the contexts).
	//
	// The dynamic value allows us to add the log tag to the context now and
	// update the value asynchronously. It's not significantly more expensive than
	// a regular tag since it's just doing an (atomic) load when a log/trace
	// message is constructed.
	s.nodeLogTagVal.Set(log.DynamicIntValueUnknown)
	srvCtx.Ctx = log.WithLogTag(srvCtx.Ctx, "n", &s.nodeLogTagVal)
	s.ctx = srvCtx

	s.clock.SetMaxOffset(srvCtx.MaxOffset)

	s.rpcContext = rpc.NewContext(srvCtx.Context, s.clock, s.stopper)
	s.rpcContext.HeartbeatCB = func() {
		if err := s.rpcContext.RemoteClocks.VerifyClockOffset(); err != nil {
			log.Fatal(s.Ctx(), err)
		}
	}
	s.grpc = rpc.NewServer(s.rpcContext)

	s.registry = metric.NewRegistry()
	s.gossip = gossip.New(
		s.Ctx(), s.rpcContext, s.grpc, s.ctx.GossipBootstrapResolvers, s.stopper, s.registry)
	s.storePool = storage.NewStorePool(
		s.gossip,
		s.clock,
		s.rpcContext,
		srvCtx.ReservationsEnabled,
		srvCtx.TimeUntilStoreDead,
		s.stopper,
	)

	// A custom RetryOptions is created which uses stopper.ShouldQuiesce() as
	// the Closer. This prevents infinite retry loops from occurring during
	// graceful server shutdown
	//
	// Such a loop loop occurs with the DistSender attempts a connection to the
	// local server during shutdown, and receives an internal server error (HTTP
	// Code 5xx). This is the correct error for a server to return when it is
	// shutting down, and is normally retryable in a cluster environment.
	// However, on a single-node setup (such as a test), retries will never
	// succeed because the only server has been shut down; thus, thus the
	// DistSender needs to know that it should not retry in this situation.
	retryOpts := base.DefaultRetryOptions()
	retryOpts.Closer = s.stopper.ShouldQuiesce()
	distSenderCfg := kv.DistSenderConfig{
		Ctx:             s.Ctx(),
		Clock:           s.clock,
		RPCContext:      s.rpcContext,
		RPCRetryOptions: &retryOpts,
	}
	s.distSender = kv.NewDistSender(&distSenderCfg, s.gossip)

	txnMetrics := kv.MakeTxnMetrics()
	s.registry.AddMetricStruct(txnMetrics)
	s.txnCoordSender = kv.NewTxnCoordSender(s.Ctx(), s.distSender, s.clock, srvCtx.Linearizable,
		s.stopper, txnMetrics)
	s.db = client.NewDB(s.txnCoordSender)

	s.raftTransport = storage.NewRaftTransport(storage.GossipAddressResolver(s.gossip), s.grpc, s.rpcContext)

	s.kvDB = kv.NewDBServer(s.ctx.Context, s.txnCoordSender, s.stopper)
	roachpb.RegisterExternalServer(s.grpc, s.kvDB)

	// Set up Lease Manager
	var lmKnobs sql.LeaseManagerTestingKnobs
	if srvCtx.TestingKnobs.SQLLeaseManager != nil {
		lmKnobs = *srvCtx.TestingKnobs.SQLLeaseManager.(*sql.LeaseManagerTestingKnobs)
	}
	s.leaseMgr = sql.NewLeaseManager(0, *s.db, s.clock, lmKnobs, s.stopper)
	s.leaseMgr.RefreshLeases(s.stopper, s.db, s.gossip)

	// Set up the DistSQL server
	distSQLCfg := distsql.ServerConfig{
		Context:    s.Ctx(),
		DB:         s.db,
		RPCContext: s.rpcContext,
	}
	s.distSQLServer = distsql.NewServer(distSQLCfg)
	distsql.RegisterDistSQLServer(s.grpc, s.distSQLServer)

	// Set up Executor
	execCfg := sql.ExecutorConfig{
		Context:      s.Ctx(),
		DB:           s.db,
		Gossip:       s.gossip,
		LeaseManager: s.leaseMgr,
		Clock:        s.clock,
		DistSQLSrv:   s.distSQLServer,
	}
	if srvCtx.TestingKnobs.SQLExecutor != nil {
		execCfg.TestingKnobs = srvCtx.TestingKnobs.SQLExecutor.(*sql.ExecutorTestingKnobs)
	} else {
		execCfg.TestingKnobs = &sql.ExecutorTestingKnobs{}
	}

	s.sqlExecutor = sql.NewExecutor(execCfg, s.stopper)
	s.registry.AddMetricStruct(s.sqlExecutor)

	s.pgServer = pgwire.MakeServer(s.ctx.Context, s.sqlExecutor)
	s.registry.AddMetricStruct(s.pgServer.Metrics())

	// TODO(bdarnell): make StoreConfig configurable.
	nCtx := storage.StoreContext{
		Ctx:                            s.Ctx(),
		Clock:                          s.clock,
		DB:                             s.db,
		Gossip:                         s.gossip,
		Transport:                      s.raftTransport,
		RaftTickInterval:               s.ctx.RaftTickInterval,
		ScanInterval:                   s.ctx.ScanInterval,
		ScanMaxIdleTime:                s.ctx.ScanMaxIdleTime,
		ConsistencyCheckInterval:       s.ctx.ConsistencyCheckInterval,
		ConsistencyCheckPanicOnFailure: s.ctx.ConsistencyCheckPanicOnFailure,
		StorePool:                      s.storePool,
		SQLExecutor: sql.InternalExecutor{
			LeaseManager: s.leaseMgr,
		},
		LogRangeEvents: true,
		AllocatorOptions: storage.AllocatorOptions{
			AllowRebalance: true,
		},
	}
	if srvCtx.TestingKnobs.Store != nil {
		nCtx.TestingKnobs = *srvCtx.TestingKnobs.Store.(*storage.StoreTestingKnobs)
	}

	s.recorder = status.NewMetricsRecorder(s.clock)
	s.registry.AddMetricStruct(s.rpcContext.RemoteClocks.Metrics())

	s.runtime = status.MakeRuntimeStatSampler(s.clock)
	s.registry.AddMetricStruct(s.runtime)

	s.node = NewNode(nCtx, s.recorder, s.registry, s.stopper, txnMetrics, sql.MakeEventLogger(s.leaseMgr))
	roachpb.RegisterInternalServer(s.grpc, s.node)
	storage.RegisterStoresServer(s.grpc, s.node.storesServer)

	s.tsDB = ts.NewDB(s.db)
	s.tsServer = ts.MakeServer(s.tsDB)

	s.admin = makeAdminServer(s)
	s.status = newStatusServer(s.db, s.gossip, s.recorder, s.ctx.Context, s.rpcContext, s.node.stores)
	for _, gw := range []grpcGatewayServer{&s.admin, s.status, &s.tsServer} {
		gw.RegisterService(s.grpc)
	}

	return s, nil
}
Пример #7
0
// Batch implements the roachpb.InternalServer interface.
func (n *Node) Batch(
	ctx context.Context, args *roachpb.BatchRequest,
) (br *roachpb.BatchResponse, err error) {
	// TODO(marc,bdarnell): this code is duplicated in server/node.go,
	// which should be fixed.
	defer func() {
		// We always return errors via BatchResponse.Error so structure is
		// preserved; plain errors are presumed to be from the RPC
		// framework and not from cockroach.
		if err != nil {
			if br == nil {
				br = &roachpb.BatchResponse{}
			}
			if br.Error != nil {
				panic(fmt.Sprintf(
					"attempting to return both a plain error (%s) and roachpb.Error (%s)", err, br.Error))
			}
			br.Error = roachpb.NewError(err)
			err = nil
		}
	}()
	// TODO(marc): grpc's authentication model (which gives credential access in
	// the request handler) doesn't really fit with the current design of the
	// security package (which assumes that TLS state is only given at connection
	// time) - that should be fixed.
	if peer, ok := peer.FromContext(ctx); ok {
		if tlsInfo, ok := peer.AuthInfo.(credentials.TLSInfo); ok {
			certUser, err := security.GetCertificateUser(&tlsInfo.State)
			if err != nil {
				return nil, err
			}
			if certUser != security.NodeUser {
				return nil, errors.Errorf("user %s is not allowed", certUser)
			}
		}
	}

	const opName = "node.Batch"

	fail := func(err error) {
		br = &roachpb.BatchResponse{}
		br.Error = roachpb.NewError(err)
	}

	f := func() {
		sp, err := tracing.JoinOrNew(tracing.TracerFromCtx(n.Ctx()), args.Trace, opName)
		if err != nil {
			fail(err)
			return
		}
		// If this is a snowball span, it gets special treatment: It skips the
		// regular tracing machinery, and we instead send the collected spans
		// back with the response. This is more expensive, but then again,
		// those are individual requests traced by users, so they can be.
		if sp.BaggageItem(tracing.Snowball) != "" {
			sp.LogEvent("delegating to snowball tracing")
			sp.Finish()
			if sp, err = tracing.JoinOrNewSnowball(opName, args.Trace, func(rawSpan basictracer.RawSpan) {
				encSp, err := tracing.EncodeRawSpan(&rawSpan, nil)
				if err != nil {
					log.Warning(ctx, err)
				}
				br.CollectedSpans = append(br.CollectedSpans, encSp)
			}); err != nil {
				fail(err)
				return
			}
		}
		defer sp.Finish()
		traceCtx := opentracing.ContextWithSpan(ctx, sp)
		log.Tracef(traceCtx, "node "+strconv.Itoa(int(n.Descriptor.NodeID))) // could save allocs here.

		tStart := timeutil.Now()
		var pErr *roachpb.Error
		br, pErr = n.stores.Send(traceCtx, *args)
		if pErr != nil {
			br = &roachpb.BatchResponse{}
			log.Tracef(traceCtx, "error: %T", pErr.GetDetail())
		}
		if br.Error != nil {
			panic(roachpb.ErrorUnexpectedlySet(n.stores, br))
		}
		n.metrics.callComplete(timeutil.Since(tStart), pErr)
		br.Error = pErr
	}

	if err := n.stopper.RunTask(f); err != nil {
		return nil, err
	}
	return br, nil
}