func fill(canv *Canvas, alphaTex *glh.Texture, paint *Paint) { gGl.GlColorConfig.SetColor(paint.fillColor) defer gGl.GlColorConfig.Reset() gGl.Activate(gGl.FillDrawer) gl.ColorMask(true, true, true, true) gl.StencilMask(0x3) gl.StencilFunc(gl.LESS, 0, 0xff) w, h := canv.W, canv.H p := canv.toGLPoints([]Point{ iPt(0, 0), iPt(w, 0), iPt(w, h), iPt(0, h), }) vertices := []float32{ p[0].X, p[0].Y, 0, 1, p[1].X, p[1].Y, 1, 1, p[2].X, p[2].Y, 1, 0, p[3].X, p[3].Y, 0, 0, } gl.BufferData(gl.ARRAY_BUFFER, len(vertices)*4, vertices, gl.STATIC_DRAW) elements := []uint32{ 0, 1, 2, 2, 3, 0, } gl.BufferData(gl.ELEMENT_ARRAY_BUFFER, len(elements)*4, elements, gl.STATIC_DRAW) glh.With(alphaTex, func() { gl.DrawElements(gl.TRIANGLES, 6, gl.UNSIGNED_INT, nil) }) }
func (p *Path) draw(canv *Canvas, alphaBuffer *glh.Framebuffer, clrStencil bool) { gGl.QuadraticDrawConfig.SetExcludeTransluFrags(false) glh.With(alphaBuffer, func() { gl.ClearColor(0, 0, 0, 0) gl.Clear(gl.COLOR_BUFFER_BIT) p.glDraw(canv) }) if clrStencil { gl.StencilMask(0x3) gl.ClearStencil(0x0) gl.Clear(gl.STENCIL_BUFFER_BIT) } gl.ColorMask(false, false, false, false) gl.StencilMask(0x3) gl.StencilFunc(gl.ALWAYS, 0, 0xff) gl.StencilOp(gl.KEEP, gl.KEEP, gl.INVERT) p.glDraw(canv) gl.StencilMask(0x1) gGl.QuadraticDrawConfig.SetExcludeTransluFrags(true) p.glDraw(canv) }
func main() { var err error if err = glfw.Init(); err != nil { fmt.Fprintf(os.Stderr, "[e] %v\n", err) return } defer glfw.Terminate() w, h := 1980, 1080 // w, h := 1280, 768 if err = glfw.OpenWindow(w, h, 8, 8, 8, 16, 0, 32, glfw.Fullscreen); err != nil { fmt.Fprintf(os.Stderr, "[e] %v\n", err) return } defer glfw.CloseWindow() glfw.SetSwapInterval(1) glfw.SetWindowTitle("Debris") quadric = glu.NewQuadric() gl.Enable(gl.CULL_FACE) gl.Enable(gl.DEPTH_TEST) gl.DepthFunc(gl.LEQUAL) gl.Enable(gl.NORMALIZE) gl.Enable(gl.BLEND) gl.BlendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA) gl.ShadeModel(gl.SMOOTH) gl.Enable(gl.LIGHTING) var ( ambient = []float32{0.1, 0.3, 0.6, 1} diffuse = []float32{1, 1, 0.5, 1} specular = []float32{0.4, 0.4, 0.4, 1} light_position = []float32{1, 0, 0, 0} // mat_specular []float32 = []float32{1, 1, 0.5, 1} mat_specular = []float32{1, 1, 0.75, 1} mat_shininess = float32(120) // light_position []float32 = []float32{0.0, 0.0, 1.0, 0.0} ) const ( fov = 1.1 // degrees znear = 145 zfar = 155 camera_z_offset = -150 camera_x_rotation = 0 // degrees // camera_x_rotation = 20 // degrees starfield_fov = 45 faces = 1000 earth_radius = 1 ) gl.Lightfv(gl.LIGHT1, gl.AMBIENT, ambient) gl.Lightfv(gl.LIGHT1, gl.DIFFUSE, diffuse) gl.Lightfv(gl.LIGHT1, gl.SPECULAR, specular) gl.Lightfv(gl.LIGHT1, gl.POSITION, light_position) gl.Enable(gl.LIGHT1) mat_emission := []float32{0, 0, 0.1, 1} gl.Materialfv(gl.FRONT_AND_BACK, gl.EMISSION, mat_emission) gl.Materialfv(gl.FRONT_AND_BACK, gl.SPECULAR, mat_specular) gl.Materialf(gl.FRONT_AND_BACK, gl.SHININESS, mat_shininess) gl.ClearColor(0.02, 0.02, 0.02, 1) gl.ClearDepth(1) gl.ClearStencil(0) gl.Clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT) b := createBuffer() planetoids := []*Planetoid{} for i := 0; i < 1000; i++ { p := &Planetoid{ apogee: 1.2 + rand.Float64()*0.7, perigee: 1.5, // inclination: 45, inclination: rand.Float64()*20 - 10, // inclination: 0, phase0: rand.Float64() * 360, rising_node: rand.Float64() * 10, phase: 0, // radius: rand.Float32()*0.05 + 0.01, //float32(r), radius: rand.Float32()*0.0125 + 0.005, //float32(r), // quadric: glu.NewQuadric(), circle: b, } planetoids = append(planetoids, p) } // Initial projection matrix: var aspect float64 glfw.SetWindowSizeCallback(func(w, h int) { gl.Viewport(0, 0, w, h) gl.MatrixMode(gl.PROJECTION) gl.LoadIdentity() aspect = float64(w) / float64(h) glu.Perspective(fov, aspect, znear, zfar) }) d := float64(0) wireframe := false atmosphere := false polar := false rotating := false front := false earth := true cone := true shadowing := true tilt := false running := true glfw.SetKeyCallback(func(key, state int) { if state != glfw.KeyPress { // Don't act on key coming up return } switch key { case 'A': atmosphere = !atmosphere case 'C': cone = !cone case 'E': earth = !earth case 'R': rotating = !rotating case 'F': front = !front if front { gl.FrontFace(gl.CW) } else { gl.FrontFace(gl.CCW) } case 'S': shadowing = !shadowing case 'T': tilt = !tilt case 'W': wireframe = !wireframe method := gl.GLenum(gl.FILL) if wireframe { method = gl.LINE } gl.PolygonMode(gl.FRONT_AND_BACK, method) case glfw.KeyF2: println("Screenshot captured") // glh.CaptureToPng("screenshot.png") w, h := glh.GetViewportWH() im := image.NewRGBA(image.Rect(0, 0, w, h)) glh.ClearAlpha(1) gl.Flush() glh.CaptureRGBA(im) go func() { fd, err := os.Create("screenshot.png") if err != nil { panic("Unable to open file") } defer fd.Close() png.Encode(fd, im) }() case 'Q', glfw.KeyEsc: running = !running case glfw.KeySpace: polar = !polar } }) _ = rand.Float64 stars := glh.NewMeshBuffer( glh.RenderArrays, glh.NewPositionAttr(3, gl.DOUBLE, gl.STATIC_DRAW), glh.NewColorAttr(3, gl.DOUBLE, gl.STATIC_DRAW)) const Nstars = 50000 points := make([]float64, 3*Nstars) colors := make([]float64, 3*Nstars) for i := 0; i < Nstars; i++ { const R = 1 phi := rand.Float64() * 2 * math.Pi z := R * (2*rand.Float64() - 1) theta := math.Asin(z / R) points[i*3+0] = R * math.Cos(theta) * math.Cos(phi) points[i*3+1] = R * math.Cos(theta) * math.Sin(phi) points[i*3+2] = z const r = 0.8 v := rand.Float64()*r + (1 - r) colors[i*3+0] = v colors[i*3+1] = v colors[i*3+2] = v } stars.Add(points, colors) render_stars := func() { glh.With(glh.Attrib{gl.DEPTH_BUFFER_BIT | gl.ENABLE_BIT}, func() { gl.Disable(gl.LIGHTING) gl.PointSize(1) gl.Color4f(1, 1, 1, 1) gl.Disable(gl.DEPTH_TEST) gl.DepthMask(false) stars.Render(gl.POINTS) }) } render_scene := func() { // Update light position (sensitive to current modelview matrix) gl.Lightfv(gl.LIGHT1, gl.POSITION, light_position) gl.Lightfv(gl.LIGHT2, gl.POSITION, light_position) if earth { Sphere(earth_radius, faces) } unlit_points := glh.Compound(glh.Disable(gl.LIGHTING), glh.Primitive{gl.POINTS}) glh.With(unlit_points, func() { gl.Vertex3d(1, 0, 0) }) for _, p := range planetoids { const dt = 0.1 // TODO: Frame update p.Render(dt) } glh.With(glh.Disable(gl.LIGHTING), func() { // Atmosphere gl.Color4f(0.25, 0.25, 1, 0.1) if atmosphere && earth { Sphere(earth_radius*1.025, 100) } gl.PointSize(10) glh.With(glh.Primitive{gl.POINTS}, func() { gl.Color4f(1.75, 0.75, 0.75, 1) gl.Vertex3d(-1.04, 0, 0) }) }) } render_shadow_volume := func() { glh.With(glh.Attrib{ gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT | gl.ENABLE_BIT | gl.POLYGON_BIT | gl.STENCIL_BUFFER_BIT, }, func() { gl.Disable(gl.LIGHTING) if shadowing { // gl.Disable(gl.DEPTH_TEST) gl.DepthMask(false) gl.DepthFunc(gl.LEQUAL) gl.Enable(gl.STENCIL_TEST) gl.ColorMask(false, false, false, false) gl.StencilFunc(gl.ALWAYS, 1, 0xffffffff) } shadow_volume := func() { const sv_length = 2 const sv_granularity = 100 const sv_radius = earth_radius * 1.001 // Shadow cone glh.With(glh.Matrix{gl.MODELVIEW}, func() { gl.Rotatef(90, 1, 0, 0) gl.Rotatef(90, 0, -1, 0) gl.Color4f(0.5, 0.5, 0.5, 1) glu.Cylinder(quadric, sv_radius, sv_radius*1.05, sv_length, sv_granularity, 1) glu.Disk(quadric, 0, sv_radius, sv_granularity, 1) glh.With(glh.Matrix{gl.MODELVIEW}, func() { gl.Translated(0, 0, sv_length) glu.Disk(quadric, 0, sv_radius*1.05, sv_granularity, 1) }) }) for _, p := range planetoids { p.RenderShadowVolume() } } if cone { gl.FrontFace(gl.CCW) gl.StencilOp(gl.KEEP, gl.KEEP, gl.INCR) shadow_volume() gl.FrontFace(gl.CW) gl.StencilOp(gl.KEEP, gl.KEEP, gl.DECR) shadow_volume() } if shadowing { gl.StencilFunc(gl.NOTEQUAL, 0, 0xffffffff) gl.StencilOp(gl.KEEP, gl.KEEP, gl.KEEP) gl.ColorMask(true, true, true, true) // gl.Disable(gl.STENCIL_TEST) gl.Disable(gl.DEPTH_TEST) gl.FrontFace(gl.CCW) // gl.Color4f(1, 0, 0, 0.75) gl.Color4f(0, 0, 0, 0.75) // gl.Color4f(1, 1, 1, 0.75) gl.LoadIdentity() gl.Translated(0, 0, camera_z_offset) // TODO: Figure out why this doesn't draw over the whole screen glh.With(glh.Disable(gl.LIGHTING), func() { glh.DrawQuadd(-10, -10, 20, 20) }) // gl.FrontFace(gl.CW) // gl.Enable(gl.LIGHTING) // gl.Disable(gl.LIGHT1) // render_scene() // gl.Enable(gl.LIGHT1) } }) } _ = render_stars for running { running = glfw.WindowParam(glfw.Opened) == 1 glfw.SwapBuffers() gl.Clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT | gl.STENCIL_BUFFER_BIT) rotation := func() { if tilt { gl.Rotated(20, 1, 0, 0) } if polar { gl.Rotated(90, 1, 0, 0) } gl.Rotated(d, 0, -1, 0) } // Star field glh.With(glh.Matrix{gl.PROJECTION}, func() { gl.LoadIdentity() glu.Perspective(starfield_fov, aspect, 0, 1) glh.With(glh.Matrix{gl.MODELVIEW}, func() { gl.LoadIdentity() rotation() render_stars() }) }) gl.MatrixMode(gl.MODELVIEW) gl.LoadIdentity() gl.Translated(0, 0, camera_z_offset) rotation() if rotating { d += 0.2 } _ = render_scene render_scene() _ = render_shadow_volume render_shadow_volume() } }