func crop(f *data.Slice) { N := f.Size() // default ranges x1, x2 := 0, N[X] y1, y2 := 0, N[Y] z1, z2 := 0, N[Z] havework := false if *flag_cropz != "" { z1, z2 = parseRange(*flag_cropz, N[Z]) havework = true } if *flag_cropy != "" { y1, y2 = parseRange(*flag_cropy, N[Y]) havework = true } if *flag_cropx != "" { x1, x2 = parseRange(*flag_cropx, N[X]) havework = true } if havework { *f = *data.Crop(f, x1, x2, y1, y2, z1, z2) } }
// Writes data in OMF Binary 4 format func writeOVF1Binary4(out io.Writer, array *data.Slice) (err error) { data := array.Tensors() gridsize := array.Size() var bytes []byte // OOMMF requires this number to be first to check the format var controlnumber float32 = OVF_CONTROL_NUMBER_4 // Conversion form float32 [4]byte in big-endian // Inlined for performance, terabytes of data will pass here... bytes = (*[4]byte)(unsafe.Pointer(&controlnumber))[:] bytes[0], bytes[1], bytes[2], bytes[3] = bytes[3], bytes[2], bytes[1], bytes[0] // swap endianess _, err = out.Write(bytes) ncomp := array.NComp() for iz := 0; iz < gridsize[Z]; iz++ { for iy := 0; iy < gridsize[Y]; iy++ { for ix := 0; ix < gridsize[X]; ix++ { for c := 0; c < ncomp; c++ { // dirty conversion from float32 to [4]byte bytes = (*[4]byte)(unsafe.Pointer(&data[c][iz][iy][ix]))[:] bytes[0], bytes[1], bytes[2], bytes[3] = bytes[3], bytes[2], bytes[1], bytes[0] out.Write(bytes) } } } } return }
// shift dst by shx cells (positive or negative) along X-axis. // new edge value is clampL at left edge or clampR at right edge. func ShiftX(dst, src *data.Slice, shiftX int, clampL, clampR float32) { util.Argument(dst.NComp() == 1 && src.NComp() == 1) util.Assert(dst.Len() == src.Len()) N := dst.Size() cfg := make3DConf(N) k_shiftx_async(dst.DevPtr(0), src.DevPtr(0), N[X], N[Y], N[Z], shiftX, clampL, clampR, cfg) }
func writeOVF2DataBinary4(out io.Writer, array *data.Slice) { //w.count(w.out.Write((*(*[1<<31 - 1]byte)(unsafe.Pointer(&list[0])))[0 : 4*len(list)])) // (shortcut) data := array.Tensors() size := array.Size() var bytes []byte // OOMMF requires this number to be first to check the format var controlnumber float32 = OVF_CONTROL_NUMBER_4 bytes = (*[4]byte)(unsafe.Pointer(&controlnumber))[:] out.Write(bytes) ncomp := array.NComp() for iz := 0; iz < size[Z]; iz++ { for iy := 0; iy < size[Y]; iy++ { for ix := 0; ix < size[X]; ix++ { for c := 0; c < ncomp; c++ { bytes = (*[4]byte)(unsafe.Pointer(&data[c][iz][iy][ix]))[:] out.Write(bytes) } } } } }
func (b *magnetization) SetArray(src *data.Slice) { if src.Size() != b.Mesh().Size() { src = data.Resample(src, b.Mesh().Size()) } data.Copy(b.Buffer(), src) M.normalize() }
func readOVF1DataBinary8(in io.Reader, t *data.Slice) { size := t.Size() data := t.Tensors() // OOMMF requires this number to be first to check the format var controlnumber float64 // OVF 1.0 is network byte order (MSB) binary.Read(in, binary.BigEndian, &controlnumber) if controlnumber != OVF_CONTROL_NUMBER_8 { panic("invalid OVF1 control number: " + fmt.Sprint(controlnumber)) } var tmp float64 for iz := 0; iz < size[Z]; iz++ { for iy := 0; iy < size[Y]; iy++ { for ix := 0; ix < size[X]; ix++ { for c := 0; c < 3; c++ { err := binary.Read(in, binary.BigEndian, &tmp) if err != nil { panic(err) } data[c][iz][iy][ix] = float32(tmp) } } } } }
// Write the slice to out in binary format. Add time stamp. func Write(out io.Writer, s *data.Slice, info data.Meta) error { w := newWriter(out) // Writes the header. w.writeString(MAGIC) w.writeUInt64(uint64(s.NComp())) size := s.Size() w.writeUInt64(uint64(size[2])) // backwards compatible coordinates! w.writeUInt64(uint64(size[1])) w.writeUInt64(uint64(size[0])) cell := info.CellSize w.writeFloat64(cell[2]) w.writeFloat64(cell[1]) w.writeFloat64(cell[0]) w.writeString(info.MeshUnit) w.writeFloat64(info.Time) w.writeString("s") // time unit w.writeString(info.Name) w.writeString(info.Unit) w.writeUInt64(4) // precission // return header write error before writing data if w.err != nil { return w.err } w.writeData(s) w.writeHash() return w.err }
func writeVTKHeader(out io.Writer, q *data.Slice) (err error) { gridsize := q.Size() _, err = fmt.Fprintln(out, "<?xml version=\"1.0\"?>") _, err = fmt.Fprintln(out, "<VTKFile type=\"StructuredGrid\" version=\"0.1\" byte_order=\"LittleEndian\">") _, err = fmt.Fprintf(out, "\t<StructuredGrid WholeExtent=\"0 %d 0 %d 0 %d\">\n", gridsize[0]-1, gridsize[1]-1, gridsize[2]-1) _, err = fmt.Fprintf(out, "\t\t<Piece Extent=\"0 %d 0 %d 0 %d\">\n", gridsize[0]-1, gridsize[1]-1, gridsize[2]-1) return }
// Calculate the demag field of m * vol * Bsat, store result in B. // m: magnetization normalized to unit length // vol: unitless mask used to scale m's length, may be nil // Bsat: saturation magnetization in Tesla // B: resulting demag field, in Tesla func (c *DemagConvolution) Exec(B, m, vol *data.Slice, Bsat LUTPtr, regions *Bytes) { util.Argument(B.Size() == c.inputSize && m.Size() == c.inputSize) if c.is2D() { c.exec2D(B, m, vol, Bsat, regions) } else { c.exec3D(B, m, vol, Bsat, regions) } }
// Calculate the demag field of m * vol * Bsat, store result in B. // m: magnetization normalized to unit length // vol: unitless mask used to scale m's length, may be nil // Bsat: saturation magnetization in Tesla // B: resulting demag field, in Tesla func (c *DemagConvolution) Exec(B, m, vol *data.Slice, Msat MSlice) { util.Argument(B.Size() == c.inputSize && m.Size() == c.inputSize) if c.is2D() { c.exec2D(B, m, vol, Msat) } else { c.exec3D(B, m, vol, Msat) } }
// average of slice over universe func sAverageUniverse(s *data.Slice) []float64 { nCell := float64(prod(s.Size())) avg := make([]float64, s.NComp()) for i := range avg { avg[i] = float64(cuda.Sum(s.Comp(i))) / nCell checkNaN1(avg[i]) } return avg }
func writeOVF2Header(out io.Writer, q *data.Slice, meta data.Meta) { gridsize := q.Size() cellsize := meta.CellSize fmt.Fprintln(out, "# OOMMF OVF 2.0") hdr(out, "Segment count", "1") hdr(out, "Begin", "Segment") hdr(out, "Begin", "Header") hdr(out, "Title", meta.Name) hdr(out, "meshtype", "rectangular") hdr(out, "meshunit", "m") hdr(out, "xmin", 0) hdr(out, "ymin", 0) hdr(out, "zmin", 0) hdr(out, "xmax", cellsize[X]*float64(gridsize[X])) hdr(out, "ymax", cellsize[Y]*float64(gridsize[Y])) hdr(out, "zmax", cellsize[Z]*float64(gridsize[Z])) name := meta.Name var labels []interface{} if q.NComp() == 1 { labels = []interface{}{name} } else { for i := 0; i < q.NComp(); i++ { labels = append(labels, name+"_"+string('x'+i)) } } hdr(out, "valuedim", q.NComp()) hdr(out, "valuelabels", labels...) // TODO unit := meta.Unit if unit == "" { unit = "1" } if q.NComp() == 1 { hdr(out, "valueunits", unit) } else { hdr(out, "valueunits", unit, unit, unit) } // We don't really have stages //fmt.Fprintln(out, "# Desc: Stage simulation time: ", meta.TimeStep, " s") // TODO hdr(out, "Desc", "Total simulation time: ", meta.Time, " s") hdr(out, "xbase", cellsize[X]/2) hdr(out, "ybase", cellsize[Y]/2) hdr(out, "zbase", cellsize[Z]/2) hdr(out, "xnodes", gridsize[X]) hdr(out, "ynodes", gridsize[Y]) hdr(out, "znodes", gridsize[Z]) hdr(out, "xstepsize", cellsize[X]) hdr(out, "ystepsize", cellsize[Y]) hdr(out, "zstepsize", cellsize[Z]) hdr(out, "End", "Header") }
func shiftMag(m *data.Slice, dx int) { m2 := cuda.Buffer(1, m.Size()) defer cuda.Recycle(m2) for c := 0; c < m.NComp(); c++ { comp := m.Comp(c) cuda.ShiftX(m2, comp, dx, float32(ShiftMagL[c]), float32(ShiftMagR[c])) data.Copy(comp, m2) // str0 ? } }
// Set s to the toplogogical charge density s = m · (m/∂x ❌ ∂m/∂y) // See topologicalcharge.cu func SetTopologicalCharge(s *data.Slice, m *data.Slice, mesh *data.Mesh) { cellsize := mesh.CellSize() N := s.Size() util.Argument(m.Size() == N) cfg := make3DConf(N) icxcy := float32(1.0 / (cellsize[X] * cellsize[Y])) k_settopologicalcharge_async(s.DevPtr(X), m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z), icxcy, N[X], N[Y], N[Z], mesh.PBC_code(), cfg) }
// Add effective field of Dzyaloshinskii-Moriya interaction to Beff (Tesla). // According to Bagdanov and Röβler, PRL 87, 3, 2001. eq.8 (out-of-plane symmetry breaking). // See dmi.cu func AddDMI(Beff *data.Slice, m *data.Slice, Aex_red, Dex_red SymmLUT, regions *Bytes, mesh *data.Mesh) { cellsize := mesh.CellSize() N := Beff.Size() util.Argument(m.Size() == N) cfg := make3DConf(N) k_adddmi_async(Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z), m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z), unsafe.Pointer(Aex_red), unsafe.Pointer(Dex_red), regions.Ptr, float32(cellsize[X]*1e9), float32(cellsize[Y]*1e9), float32(cellsize[Z]*1e9), N[X], N[Y], N[Z], mesh.PBC_code(), cfg) }
// Add uniaxial magnetocrystalline anisotropy field to Beff. // see uniaxialanisotropy.cu func AddUniaxialAnisotropy(Beff, m *data.Slice, k1_red, k2_red LUTPtr, u LUTPtrs, regions *Bytes) { util.Argument(Beff.Size() == m.Size()) N := Beff.Len() cfg := make1DConf(N) k_adduniaxialanisotropy_async(Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z), m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z), unsafe.Pointer(k1_red), unsafe.Pointer(k2_red), u[X], u[Y], u[Z], regions.Ptr, N, cfg) }
// Crop stores in dst a rectangle cropped from src at given offset position. // dst size may be smaller than src. func Crop(dst, src *data.Slice, offX, offY, offZ int) { D := dst.Size() S := src.Size() util.Argument(dst.NComp() == src.NComp()) util.Argument(D[X]+offX <= S[X] && D[Y]+offY <= S[Y] && D[Z]+offZ <= S[Z]) cfg := make3DConf(D) for c := 0; c < dst.NComp(); c++ { k_crop_async(dst.DevPtr(c), D[X], D[Y], D[Z], src.DevPtr(c), S[X], S[Y], S[Z], offX, offY, offZ, cfg) } }
// Adds cubic anisotropy field to Beff. // see cubicanisotropy.cu func AddCubicAnisotropy(Beff, m *data.Slice, k1_red, k2_red, k3_red LUTPtr, c1, c2 LUTPtrs, regions *Bytes) { util.Argument(Beff.Size() == m.Size()) N := Beff.Len() cfg := make1DConf(N) k_addcubicanisotropy_async( Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z), m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z), unsafe.Pointer(k1_red), unsafe.Pointer(k2_red), unsafe.Pointer(k3_red), c1[X], c1[Y], c1[Z], c2[X], c2[Y], c2[Z], regions.Ptr, N, cfg) }
// Add interlayer exchange field to Beff. // see interlayer.cu func AddInterlayerExchange(Beff, m *data.Slice, J1_red, J2_red, toplayer, bottomlayer LUTPtr, direc LUTPtrs, regions *Bytes, mesh *data.Mesh) { cellsize := mesh.CellSize() N := Beff.Size() util.Argument(m.Size() == N) cfg := make3DConf(N) k_addinterlayerexchange_async(Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z), m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z), unsafe.Pointer(J1_red), unsafe.Pointer(J2_red), unsafe.Pointer(toplayer), unsafe.Pointer(bottomlayer), direc[X], direc[Y], direc[Z], float32(cellsize[X])*1e9, float32(cellsize[Y])*1e9, float32(cellsize[Z])*1e9, N[X], N[Y], N[Z], regions.Ptr, cfg) }
// Writes the data. func (w *writer) writeData(array *data.Slice) { data := array.Tensors() size := array.Size() ncomp := array.NComp() for c := 0; c < ncomp; c++ { for iz := 0; iz < size[2]; iz++ { for iy := 0; iy < size[1]; iy++ { for ix := 0; ix < size[0]; ix++ { w.writeFloat32(data[c][iz][iy][ix]) } } } } }
// Select and resize one layer for interactive output func Resize(dst, src *data.Slice, layer int) { dstsize := dst.Size() srcsize := src.Size() util.Assert(dstsize[Z] == 1) util.Assert(dst.NComp() == 1 && src.NComp() == 1) scalex := srcsize[X] / dstsize[X] scaley := srcsize[Y] / dstsize[Y] util.Assert(scalex > 0 && scaley > 0) cfg := make3DConf(dstsize) k_resize_async(dst.DevPtr(0), dstsize[X], dstsize[Y], dstsize[Z], src.DevPtr(0), srcsize[X], srcsize[Y], srcsize[Z], layer, scalex, scaley, cfg) }
// read data block in text format, for OVF1 and OVF2 func readOVFDataText(in io.Reader, t *data.Slice) { size := t.Size() data := t.Tensors() for iz := 0; iz < size[Z]; iz++ { for iy := 0; iy < size[Y]; iy++ { for ix := 0; ix < size[X]; ix++ { for c := 0; c < t.NComp(); c++ { _, err := fmt.Fscan(in, &data[c][iz][iy][ix]) if err != nil { panic(err) } } } } } }
func writeVTKPoints(out io.Writer, q *data.Slice, dataformat string, info data.Meta) (err error) { _, err = fmt.Fprintln(out, "\t\t\t<Points>") fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" NumberOfComponents=\"3\" format=\"%s\">\n\t\t\t\t\t", dataformat) gridsize := q.Size() cellsize := info.CellSize switch dataformat { case "ascii": for k := 0; k < gridsize[2]; k++ { for j := 0; j < gridsize[1]; j++ { for i := 0; i < gridsize[0]; i++ { x := (float32)(i) * (float32)(cellsize[0]) y := (float32)(j) * (float32)(cellsize[1]) z := (float32)(k) * (float32)(cellsize[2]) _, err = fmt.Fprint(out, x, " ", y, " ", z, " ") } } } case "binary": buffer := new(bytes.Buffer) for k := 0; k < gridsize[2]; k++ { for j := 0; j < gridsize[1]; j++ { for i := 0; i < gridsize[0]; i++ { x := (float32)(i) * (float32)(cellsize[0]) y := (float32)(j) * (float32)(cellsize[1]) z := (float32)(k) * (float32)(cellsize[2]) binary.Write(buffer, binary.LittleEndian, x) binary.Write(buffer, binary.LittleEndian, y) binary.Write(buffer, binary.LittleEndian, z) } } } b64len := uint32(len(buffer.Bytes())) bufLen := new(bytes.Buffer) binary.Write(bufLen, binary.LittleEndian, b64len) base64out := base64.NewEncoder(base64.StdEncoding, out) base64out.Write(bufLen.Bytes()) base64out.Write(buffer.Bytes()) base64out.Close() default: log.Fatalf("Illegal VTK data format: %v. Options are: ascii, binary", dataformat) } _, err = fmt.Fprintln(out, "\n\t\t\t\t</DataArray>") _, err = fmt.Fprintln(out, "\t\t\t</Points>") return }
// write data block in text format, for OVF1 and OVF2 func writeOVFText(out io.Writer, tens *data.Slice) (err error) { data := tens.Tensors() gridsize := tens.Size() ncomp := tens.NComp() // Here we loop over X,Y,Z, not Z,Y,X, because // internal in C-order == external in Fortran-order for iz := 0; iz < gridsize[Z]; iz++ { for iy := 0; iy < gridsize[Y]; iy++ { for ix := 0; ix < gridsize[X]; ix++ { for c := 0; c < ncomp; c++ { _, err = fmt.Fprint(out, data[c][iz][iy][ix], " ") } _, err = fmt.Fprint(out, "\n") } } } return }
// Add uniaxial magnetocrystalline anisotropy field to Beff. // see uniaxialanisotropy.cu func AddUniaxialAnisotropy2(Beff, m *data.Slice, Msat, k1, k2, u MSlice) { util.Argument(Beff.Size() == m.Size()) checkSize(Beff, m, k1, k2, u, Msat) N := Beff.Len() cfg := make1DConf(N) k_adduniaxialanisotropy2_async( Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z), m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z), Msat.DevPtr(0), Msat.Mul(0), k1.DevPtr(0), k1.Mul(0), k2.DevPtr(0), k2.Mul(0), u.DevPtr(X), u.Mul(X), u.DevPtr(Y), u.Mul(Y), u.DevPtr(Z), u.Mul(Z), N, cfg) }
// Add uniaxial magnetocrystalline anisotropy field to Beff. // see uniaxialanisotropy.cu func AddCubicAnisotropy2(Beff, m *data.Slice, Msat, k1, k2, k3, c1, c2 MSlice) { util.Argument(Beff.Size() == m.Size()) N := Beff.Len() cfg := make1DConf(N) k_addcubicanisotropy2_async( Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z), m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z), Msat.DevPtr(0), Msat.Mul(0), k1.DevPtr(0), k1.Mul(0), k2.DevPtr(0), k2.Mul(0), k3.DevPtr(0), k3.Mul(0), c1.DevPtr(X), c1.Mul(X), c1.DevPtr(Y), c1.Mul(Y), c1.DevPtr(Z), c1.Mul(Z), c2.DevPtr(X), c2.Mul(X), c2.DevPtr(Y), c2.Mul(Y), c2.DevPtr(Z), c2.Mul(Z), N, cfg) }
func readOVF2DataBinary8(in io.Reader, array *data.Slice) { size := array.Size() data := array.Tensors() // OOMMF requires this number to be first to check the format controlnumber := readFloat64(in) if controlnumber != OVF_CONTROL_NUMBER_8 { panic("invalid OVF2 control number: " + fmt.Sprint(controlnumber)) } ncomp := array.NComp() for iz := 0; iz < size[Z]; iz++ { for iy := 0; iy < size[Y]; iy++ { for ix := 0; ix < size[X]; ix++ { for c := 0; c < ncomp; c++ { data[c][iz][iy][ix] = float32(readFloat64(in)) } } } } }
// Writes the OMF header func writeOVF1Header(out io.Writer, q *data.Slice, meta data.Meta) { gridsize := q.Size() cellsize := meta.CellSize hdr(out, "OOMMF", "rectangular mesh v1.0") hdr(out, "Segment count", "1") hdr(out, "Begin", "Segment") hdr(out, "Begin", "Header") dsc(out, "Time (s)", meta.Time) hdr(out, "Title", meta.Name) hdr(out, "meshtype", "rectangular") hdr(out, "meshunit", "m") hdr(out, "xbase", cellsize[X]/2) hdr(out, "ybase", cellsize[Y]/2) hdr(out, "zbase", cellsize[Z]/2) hdr(out, "xstepsize", cellsize[X]) hdr(out, "ystepsize", cellsize[Y]) hdr(out, "zstepsize", cellsize[Z]) hdr(out, "xmin", 0) hdr(out, "ymin", 0) hdr(out, "zmin", 0) hdr(out, "xmax", cellsize[X]*float64(gridsize[X])) hdr(out, "ymax", cellsize[Y]*float64(gridsize[Y])) hdr(out, "zmax", cellsize[Z]*float64(gridsize[Z])) hdr(out, "xnodes", gridsize[X]) hdr(out, "ynodes", gridsize[Y]) hdr(out, "znodes", gridsize[Z]) hdr(out, "ValueRangeMinMag", 1e-08) // not so "optional" as the OOMMF manual suggests... hdr(out, "ValueRangeMaxMag", 1) // TODO hdr(out, "valueunit", meta.Unit) hdr(out, "valuemultiplier", 1) hdr(out, "End", "Header") }
func writeVTKCellData(out io.Writer, q *data.Slice, meta data.Meta, dataformat string) (err error) { N := q.NComp() data := q.Tensors() switch N { case 1: fmt.Fprintf(out, "\t\t\t<PointData Scalars=\"%s\">\n", meta.Name) fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n\t\t\t\t\t", meta.Name, N, dataformat) case 3: fmt.Fprintf(out, "\t\t\t<PointData Vectors=\"%s\">\n", meta.Name) fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n\t\t\t\t\t", meta.Name, N, dataformat) case 6, 9: fmt.Fprintf(out, "\t\t\t<PointData Tensors=\"%s\">\n", meta.Name) fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n\t\t\t\t\t", meta.Name, 9, dataformat) // must be 9! default: log.Fatalf("vtk: cannot handle %v components", N) } gridsize := q.Size() switch dataformat { case "ascii": for k := 0; k < gridsize[2]; k++ { for j := 0; j < gridsize[1]; j++ { for i := 0; i < gridsize[0]; i++ { // if symmetric tensor manage it appart to write the full 9 components if N == 6 { fmt.Fprint(out, data[0][k][j][i], " ") fmt.Fprint(out, data[1][k][j][i], " ") fmt.Fprint(out, data[2][k][j][i], " ") fmt.Fprint(out, data[1][k][j][i], " ") fmt.Fprint(out, data[3][k][j][i], " ") fmt.Fprint(out, data[4][k][j][i], " ") fmt.Fprint(out, data[2][k][j][i], " ") fmt.Fprint(out, data[4][k][j][i], " ") fmt.Fprint(out, data[5][k][j][i], " ") } else { for c := 0; c < N; c++ { fmt.Fprint(out, data[c][k][j][i], " ") } } } } } case "binary": // Inlined for performance, terabytes of data will pass here... buffer := new(bytes.Buffer) for k := 0; k < gridsize[2]; k++ { for j := 0; j < gridsize[1]; j++ { for i := 0; i < gridsize[0]; i++ { // if symmetric tensor manage it appart to write the full 9 components if N == 6 { binary.Write(buffer, binary.LittleEndian, data[0][k][j][i]) binary.Write(buffer, binary.LittleEndian, data[1][k][j][i]) binary.Write(buffer, binary.LittleEndian, data[2][k][j][i]) binary.Write(buffer, binary.LittleEndian, data[1][k][j][i]) binary.Write(buffer, binary.LittleEndian, data[3][k][j][i]) binary.Write(buffer, binary.LittleEndian, data[4][k][j][i]) binary.Write(buffer, binary.LittleEndian, data[2][k][j][i]) binary.Write(buffer, binary.LittleEndian, data[4][k][j][i]) binary.Write(buffer, binary.LittleEndian, data[5][k][j][i]) } else { for c := 0; c < N; c++ { binary.Write(buffer, binary.LittleEndian, data[c][k][j][i]) } } } } } b64len := uint32(len(buffer.Bytes())) bufLen := new(bytes.Buffer) binary.Write(bufLen, binary.LittleEndian, b64len) base64out := base64.NewEncoder(base64.StdEncoding, out) base64out.Write(bufLen.Bytes()) base64out.Write(buffer.Bytes()) base64out.Close() default: panic(fmt.Errorf("vtk: illegal data format " + dataformat + ". Options are: ascii, binary")) } fmt.Fprintln(out, "\n\t\t\t\t</DataArray>") fmt.Fprintln(out, "\t\t\t</PointData>") return }
// Returns a copy of in, allocated on GPU. func GPUCopy(in *data.Slice) *data.Slice { s := NewSlice(in.NComp(), in.Size()) data.Copy(s, in) return s }