Пример #1
0
func crop(f *data.Slice) {
	N := f.Size()
	// default ranges
	x1, x2 := 0, N[X]
	y1, y2 := 0, N[Y]
	z1, z2 := 0, N[Z]
	havework := false

	if *flag_cropz != "" {
		z1, z2 = parseRange(*flag_cropz, N[Z])
		havework = true
	}
	if *flag_cropy != "" {
		y1, y2 = parseRange(*flag_cropy, N[Y])
		havework = true
	}
	if *flag_cropx != "" {
		x1, x2 = parseRange(*flag_cropx, N[X])
		havework = true
	}

	if havework {
		*f = *data.Crop(f, x1, x2, y1, y2, z1, z2)
	}
}
Пример #2
0
// Writes data in OMF Binary 4 format
func writeOVF1Binary4(out io.Writer, array *data.Slice) (err error) {
	data := array.Tensors()
	gridsize := array.Size()

	var bytes []byte

	// OOMMF requires this number to be first to check the format
	var controlnumber float32 = OVF_CONTROL_NUMBER_4
	// Conversion form float32 [4]byte in big-endian
	// Inlined for performance, terabytes of data will pass here...
	bytes = (*[4]byte)(unsafe.Pointer(&controlnumber))[:]
	bytes[0], bytes[1], bytes[2], bytes[3] = bytes[3], bytes[2], bytes[1], bytes[0] // swap endianess
	_, err = out.Write(bytes)

	ncomp := array.NComp()
	for iz := 0; iz < gridsize[Z]; iz++ {
		for iy := 0; iy < gridsize[Y]; iy++ {
			for ix := 0; ix < gridsize[X]; ix++ {
				for c := 0; c < ncomp; c++ {
					// dirty conversion from float32 to [4]byte
					bytes = (*[4]byte)(unsafe.Pointer(&data[c][iz][iy][ix]))[:]
					bytes[0], bytes[1], bytes[2], bytes[3] = bytes[3], bytes[2], bytes[1], bytes[0]
					out.Write(bytes)
				}
			}
		}
	}
	return
}
Пример #3
0
// shift dst by shx cells (positive or negative) along X-axis.
// new edge value is clampL at left edge or clampR at right edge.
func ShiftX(dst, src *data.Slice, shiftX int, clampL, clampR float32) {
	util.Argument(dst.NComp() == 1 && src.NComp() == 1)
	util.Assert(dst.Len() == src.Len())
	N := dst.Size()
	cfg := make3DConf(N)
	k_shiftx_async(dst.DevPtr(0), src.DevPtr(0), N[X], N[Y], N[Z], shiftX, clampL, clampR, cfg)
}
Пример #4
0
func writeOVF2DataBinary4(out io.Writer, array *data.Slice) {

	//w.count(w.out.Write((*(*[1<<31 - 1]byte)(unsafe.Pointer(&list[0])))[0 : 4*len(list)])) // (shortcut)

	data := array.Tensors()
	size := array.Size()

	var bytes []byte

	// OOMMF requires this number to be first to check the format
	var controlnumber float32 = OVF_CONTROL_NUMBER_4
	bytes = (*[4]byte)(unsafe.Pointer(&controlnumber))[:]
	out.Write(bytes)

	ncomp := array.NComp()
	for iz := 0; iz < size[Z]; iz++ {
		for iy := 0; iy < size[Y]; iy++ {
			for ix := 0; ix < size[X]; ix++ {
				for c := 0; c < ncomp; c++ {
					bytes = (*[4]byte)(unsafe.Pointer(&data[c][iz][iy][ix]))[:]
					out.Write(bytes)
				}
			}
		}
	}
}
Пример #5
0
func (b *magnetization) SetArray(src *data.Slice) {
	if src.Size() != b.Mesh().Size() {
		src = data.Resample(src, b.Mesh().Size())
	}
	data.Copy(b.Buffer(), src)
	M.normalize()
}
Пример #6
0
func readOVF1DataBinary8(in io.Reader, t *data.Slice) {
	size := t.Size()
	data := t.Tensors()

	// OOMMF requires this number to be first to check the format
	var controlnumber float64
	// OVF 1.0 is network byte order (MSB)
	binary.Read(in, binary.BigEndian, &controlnumber)

	if controlnumber != OVF_CONTROL_NUMBER_8 {
		panic("invalid OVF1 control number: " + fmt.Sprint(controlnumber))
	}

	var tmp float64
	for iz := 0; iz < size[Z]; iz++ {
		for iy := 0; iy < size[Y]; iy++ {
			for ix := 0; ix < size[X]; ix++ {
				for c := 0; c < 3; c++ {
					err := binary.Read(in, binary.BigEndian, &tmp)
					if err != nil {
						panic(err)
					}
					data[c][iz][iy][ix] = float32(tmp)
				}
			}
		}
	}
}
Пример #7
0
// Write the slice to out in binary format. Add time stamp.
func Write(out io.Writer, s *data.Slice, info data.Meta) error {
	w := newWriter(out)

	// Writes the header.
	w.writeString(MAGIC)
	w.writeUInt64(uint64(s.NComp()))
	size := s.Size()
	w.writeUInt64(uint64(size[2])) // backwards compatible coordinates!
	w.writeUInt64(uint64(size[1]))
	w.writeUInt64(uint64(size[0]))
	cell := info.CellSize
	w.writeFloat64(cell[2])
	w.writeFloat64(cell[1])
	w.writeFloat64(cell[0])
	w.writeString(info.MeshUnit)
	w.writeFloat64(info.Time)
	w.writeString("s") // time unit
	w.writeString(info.Name)
	w.writeString(info.Unit)
	w.writeUInt64(4) // precission

	// return header write error before writing data
	if w.err != nil {
		return w.err
	}

	w.writeData(s)
	w.writeHash()
	return w.err
}
Пример #8
0
func writeVTKHeader(out io.Writer, q *data.Slice) (err error) {
	gridsize := q.Size()
	_, err = fmt.Fprintln(out, "<?xml version=\"1.0\"?>")
	_, err = fmt.Fprintln(out, "<VTKFile type=\"StructuredGrid\" version=\"0.1\" byte_order=\"LittleEndian\">")
	_, err = fmt.Fprintf(out, "\t<StructuredGrid WholeExtent=\"0 %d 0 %d 0 %d\">\n", gridsize[0]-1, gridsize[1]-1, gridsize[2]-1)
	_, err = fmt.Fprintf(out, "\t\t<Piece Extent=\"0 %d 0 %d 0 %d\">\n", gridsize[0]-1, gridsize[1]-1, gridsize[2]-1)
	return
}
Пример #9
0
// Calculate the demag field of m * vol * Bsat, store result in B.
// 	m:    magnetization normalized to unit length
// 	vol:  unitless mask used to scale m's length, may be nil
// 	Bsat: saturation magnetization in Tesla
// 	B:    resulting demag field, in Tesla
func (c *DemagConvolution) Exec(B, m, vol *data.Slice, Bsat LUTPtr, regions *Bytes) {
	util.Argument(B.Size() == c.inputSize && m.Size() == c.inputSize)
	if c.is2D() {
		c.exec2D(B, m, vol, Bsat, regions)
	} else {
		c.exec3D(B, m, vol, Bsat, regions)
	}
}
Пример #10
0
// Calculate the demag field of m * vol * Bsat, store result in B.
// 	m:    magnetization normalized to unit length
// 	vol:  unitless mask used to scale m's length, may be nil
// 	Bsat: saturation magnetization in Tesla
// 	B:    resulting demag field, in Tesla
func (c *DemagConvolution) Exec(B, m, vol *data.Slice, Msat MSlice) {
	util.Argument(B.Size() == c.inputSize && m.Size() == c.inputSize)
	if c.is2D() {
		c.exec2D(B, m, vol, Msat)
	} else {
		c.exec3D(B, m, vol, Msat)
	}
}
Пример #11
0
// average of slice over universe
func sAverageUniverse(s *data.Slice) []float64 {
	nCell := float64(prod(s.Size()))
	avg := make([]float64, s.NComp())
	for i := range avg {
		avg[i] = float64(cuda.Sum(s.Comp(i))) / nCell
		checkNaN1(avg[i])
	}
	return avg
}
Пример #12
0
func writeOVF2Header(out io.Writer, q *data.Slice, meta data.Meta) {
	gridsize := q.Size()
	cellsize := meta.CellSize

	fmt.Fprintln(out, "# OOMMF OVF 2.0")
	hdr(out, "Segment count", "1")
	hdr(out, "Begin", "Segment")
	hdr(out, "Begin", "Header")

	hdr(out, "Title", meta.Name)
	hdr(out, "meshtype", "rectangular")
	hdr(out, "meshunit", "m")

	hdr(out, "xmin", 0)
	hdr(out, "ymin", 0)
	hdr(out, "zmin", 0)

	hdr(out, "xmax", cellsize[X]*float64(gridsize[X]))
	hdr(out, "ymax", cellsize[Y]*float64(gridsize[Y]))
	hdr(out, "zmax", cellsize[Z]*float64(gridsize[Z]))

	name := meta.Name
	var labels []interface{}
	if q.NComp() == 1 {
		labels = []interface{}{name}
	} else {
		for i := 0; i < q.NComp(); i++ {
			labels = append(labels, name+"_"+string('x'+i))
		}
	}
	hdr(out, "valuedim", q.NComp())
	hdr(out, "valuelabels", labels...) // TODO
	unit := meta.Unit
	if unit == "" {
		unit = "1"
	}
	if q.NComp() == 1 {
		hdr(out, "valueunits", unit)
	} else {
		hdr(out, "valueunits", unit, unit, unit)
	}

	// We don't really have stages
	//fmt.Fprintln(out, "# Desc: Stage simulation time: ", meta.TimeStep, " s") // TODO
	hdr(out, "Desc", "Total simulation time: ", meta.Time, " s")

	hdr(out, "xbase", cellsize[X]/2)
	hdr(out, "ybase", cellsize[Y]/2)
	hdr(out, "zbase", cellsize[Z]/2)
	hdr(out, "xnodes", gridsize[X])
	hdr(out, "ynodes", gridsize[Y])
	hdr(out, "znodes", gridsize[Z])
	hdr(out, "xstepsize", cellsize[X])
	hdr(out, "ystepsize", cellsize[Y])
	hdr(out, "zstepsize", cellsize[Z])
	hdr(out, "End", "Header")
}
Пример #13
0
func shiftMag(m *data.Slice, dx int) {
	m2 := cuda.Buffer(1, m.Size())
	defer cuda.Recycle(m2)
	for c := 0; c < m.NComp(); c++ {
		comp := m.Comp(c)
		cuda.ShiftX(m2, comp, dx, float32(ShiftMagL[c]), float32(ShiftMagR[c]))
		data.Copy(comp, m2) // str0 ?
	}
}
Пример #14
0
// Set s to the toplogogical charge density s = m · (m/∂x ❌ ∂m/∂y)
// See topologicalcharge.cu
func SetTopologicalCharge(s *data.Slice, m *data.Slice, mesh *data.Mesh) {
	cellsize := mesh.CellSize()
	N := s.Size()
	util.Argument(m.Size() == N)
	cfg := make3DConf(N)
	icxcy := float32(1.0 / (cellsize[X] * cellsize[Y]))

	k_settopologicalcharge_async(s.DevPtr(X),
		m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z),
		icxcy, N[X], N[Y], N[Z], mesh.PBC_code(), cfg)
}
Пример #15
0
// Add effective field of Dzyaloshinskii-Moriya interaction to Beff (Tesla).
// According to Bagdanov and Röβler, PRL 87, 3, 2001. eq.8 (out-of-plane symmetry breaking).
// See dmi.cu
func AddDMI(Beff *data.Slice, m *data.Slice, Aex_red, Dex_red SymmLUT, regions *Bytes, mesh *data.Mesh) {
	cellsize := mesh.CellSize()
	N := Beff.Size()
	util.Argument(m.Size() == N)
	cfg := make3DConf(N)

	k_adddmi_async(Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z),
		m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z),
		unsafe.Pointer(Aex_red), unsafe.Pointer(Dex_red), regions.Ptr,
		float32(cellsize[X]*1e9), float32(cellsize[Y]*1e9), float32(cellsize[Z]*1e9), N[X], N[Y], N[Z], mesh.PBC_code(), cfg)
}
Пример #16
0
// Add uniaxial magnetocrystalline anisotropy field to Beff.
// see uniaxialanisotropy.cu
func AddUniaxialAnisotropy(Beff, m *data.Slice, k1_red, k2_red LUTPtr, u LUTPtrs, regions *Bytes) {
	util.Argument(Beff.Size() == m.Size())

	N := Beff.Len()
	cfg := make1DConf(N)

	k_adduniaxialanisotropy_async(Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z),
		m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z),
		unsafe.Pointer(k1_red), unsafe.Pointer(k2_red),
		u[X], u[Y], u[Z],
		regions.Ptr, N, cfg)
}
Пример #17
0
// Crop stores in dst a rectangle cropped from src at given offset position.
// dst size may be smaller than src.
func Crop(dst, src *data.Slice, offX, offY, offZ int) {
	D := dst.Size()
	S := src.Size()
	util.Argument(dst.NComp() == src.NComp())
	util.Argument(D[X]+offX <= S[X] && D[Y]+offY <= S[Y] && D[Z]+offZ <= S[Z])

	cfg := make3DConf(D)

	for c := 0; c < dst.NComp(); c++ {
		k_crop_async(dst.DevPtr(c), D[X], D[Y], D[Z],
			src.DevPtr(c), S[X], S[Y], S[Z],
			offX, offY, offZ, cfg)
	}
}
Пример #18
0
// Adds cubic anisotropy field to Beff.
// see cubicanisotropy.cu
func AddCubicAnisotropy(Beff, m *data.Slice, k1_red, k2_red, k3_red LUTPtr, c1, c2 LUTPtrs, regions *Bytes) {
	util.Argument(Beff.Size() == m.Size())

	N := Beff.Len()
	cfg := make1DConf(N)

	k_addcubicanisotropy_async(
		Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z),
		m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z),
		unsafe.Pointer(k1_red), unsafe.Pointer(k2_red), unsafe.Pointer(k3_red),
		c1[X], c1[Y], c1[Z],
		c2[X], c2[Y], c2[Z],
		regions.Ptr, N, cfg)
}
Пример #19
0
// Add interlayer exchange field to Beff.
// see interlayer.cu
func AddInterlayerExchange(Beff, m *data.Slice, J1_red, J2_red, toplayer, bottomlayer LUTPtr, direc LUTPtrs, regions *Bytes, mesh *data.Mesh) {
	cellsize := mesh.CellSize()
	N := Beff.Size()
	util.Argument(m.Size() == N)
	cfg := make3DConf(N)

	k_addinterlayerexchange_async(Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z),
		m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z),
		unsafe.Pointer(J1_red), unsafe.Pointer(J2_red),
		unsafe.Pointer(toplayer), unsafe.Pointer(bottomlayer),
		direc[X], direc[Y], direc[Z],
		float32(cellsize[X])*1e9, float32(cellsize[Y])*1e9, float32(cellsize[Z])*1e9,
		N[X], N[Y], N[Z],
		regions.Ptr, cfg)
}
Пример #20
0
// Writes the data.
func (w *writer) writeData(array *data.Slice) {
	data := array.Tensors()
	size := array.Size()

	ncomp := array.NComp()
	for c := 0; c < ncomp; c++ {
		for iz := 0; iz < size[2]; iz++ {
			for iy := 0; iy < size[1]; iy++ {
				for ix := 0; ix < size[0]; ix++ {
					w.writeFloat32(data[c][iz][iy][ix])
				}
			}
		}
	}
}
Пример #21
0
// Select and resize one layer for interactive output
func Resize(dst, src *data.Slice, layer int) {
	dstsize := dst.Size()
	srcsize := src.Size()
	util.Assert(dstsize[Z] == 1)
	util.Assert(dst.NComp() == 1 && src.NComp() == 1)

	scalex := srcsize[X] / dstsize[X]
	scaley := srcsize[Y] / dstsize[Y]
	util.Assert(scalex > 0 && scaley > 0)

	cfg := make3DConf(dstsize)

	k_resize_async(dst.DevPtr(0), dstsize[X], dstsize[Y], dstsize[Z],
		src.DevPtr(0), srcsize[X], srcsize[Y], srcsize[Z], layer, scalex, scaley, cfg)
}
Пример #22
0
// read data block in text format, for OVF1 and OVF2
func readOVFDataText(in io.Reader, t *data.Slice) {
	size := t.Size()
	data := t.Tensors()
	for iz := 0; iz < size[Z]; iz++ {
		for iy := 0; iy < size[Y]; iy++ {
			for ix := 0; ix < size[X]; ix++ {
				for c := 0; c < t.NComp(); c++ {
					_, err := fmt.Fscan(in, &data[c][iz][iy][ix])
					if err != nil {
						panic(err)
					}
				}
			}
		}
	}
}
Пример #23
0
func writeVTKPoints(out io.Writer, q *data.Slice, dataformat string, info data.Meta) (err error) {
	_, err = fmt.Fprintln(out, "\t\t\t<Points>")
	fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" NumberOfComponents=\"3\" format=\"%s\">\n\t\t\t\t\t", dataformat)
	gridsize := q.Size()
	cellsize := info.CellSize
	switch dataformat {
	case "ascii":
		for k := 0; k < gridsize[2]; k++ {
			for j := 0; j < gridsize[1]; j++ {
				for i := 0; i < gridsize[0]; i++ {
					x := (float32)(i) * (float32)(cellsize[0])
					y := (float32)(j) * (float32)(cellsize[1])
					z := (float32)(k) * (float32)(cellsize[2])
					_, err = fmt.Fprint(out, x, " ", y, " ", z, " ")
				}
			}
		}
	case "binary":
		buffer := new(bytes.Buffer)
		for k := 0; k < gridsize[2]; k++ {
			for j := 0; j < gridsize[1]; j++ {
				for i := 0; i < gridsize[0]; i++ {
					x := (float32)(i) * (float32)(cellsize[0])
					y := (float32)(j) * (float32)(cellsize[1])
					z := (float32)(k) * (float32)(cellsize[2])
					binary.Write(buffer, binary.LittleEndian, x)
					binary.Write(buffer, binary.LittleEndian, y)
					binary.Write(buffer, binary.LittleEndian, z)
				}
			}
		}
		b64len := uint32(len(buffer.Bytes()))
		bufLen := new(bytes.Buffer)
		binary.Write(bufLen, binary.LittleEndian, b64len)
		base64out := base64.NewEncoder(base64.StdEncoding, out)
		base64out.Write(bufLen.Bytes())
		base64out.Write(buffer.Bytes())
		base64out.Close()
	default:
		log.Fatalf("Illegal VTK data format: %v. Options are: ascii, binary", dataformat)
	}
	_, err = fmt.Fprintln(out, "\n\t\t\t\t</DataArray>")
	_, err = fmt.Fprintln(out, "\t\t\t</Points>")
	return
}
Пример #24
0
// write data block in text format, for OVF1 and OVF2
func writeOVFText(out io.Writer, tens *data.Slice) (err error) {
	data := tens.Tensors()
	gridsize := tens.Size()
	ncomp := tens.NComp()

	// Here we loop over X,Y,Z, not Z,Y,X, because
	// internal in C-order == external in Fortran-order
	for iz := 0; iz < gridsize[Z]; iz++ {
		for iy := 0; iy < gridsize[Y]; iy++ {
			for ix := 0; ix < gridsize[X]; ix++ {
				for c := 0; c < ncomp; c++ {
					_, err = fmt.Fprint(out, data[c][iz][iy][ix], " ")
				}
				_, err = fmt.Fprint(out, "\n")
			}
		}
	}
	return
}
Пример #25
0
// Add uniaxial magnetocrystalline anisotropy field to Beff.
// see uniaxialanisotropy.cu
func AddUniaxialAnisotropy2(Beff, m *data.Slice, Msat, k1, k2, u MSlice) {
	util.Argument(Beff.Size() == m.Size())

	checkSize(Beff, m, k1, k2, u, Msat)

	N := Beff.Len()
	cfg := make1DConf(N)

	k_adduniaxialanisotropy2_async(
		Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z),
		m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z),
		Msat.DevPtr(0), Msat.Mul(0),
		k1.DevPtr(0), k1.Mul(0),
		k2.DevPtr(0), k2.Mul(0),
		u.DevPtr(X), u.Mul(X),
		u.DevPtr(Y), u.Mul(Y),
		u.DevPtr(Z), u.Mul(Z),
		N, cfg)
}
Пример #26
0
// Add uniaxial magnetocrystalline anisotropy field to Beff.
// see uniaxialanisotropy.cu
func AddCubicAnisotropy2(Beff, m *data.Slice, Msat, k1, k2, k3, c1, c2 MSlice) {
	util.Argument(Beff.Size() == m.Size())

	N := Beff.Len()
	cfg := make1DConf(N)
	k_addcubicanisotropy2_async(
		Beff.DevPtr(X), Beff.DevPtr(Y), Beff.DevPtr(Z),
		m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z),
		Msat.DevPtr(0), Msat.Mul(0),
		k1.DevPtr(0), k1.Mul(0),
		k2.DevPtr(0), k2.Mul(0),
		k3.DevPtr(0), k3.Mul(0),
		c1.DevPtr(X), c1.Mul(X),
		c1.DevPtr(Y), c1.Mul(Y),
		c1.DevPtr(Z), c1.Mul(Z),
		c2.DevPtr(X), c2.Mul(X),
		c2.DevPtr(Y), c2.Mul(Y),
		c2.DevPtr(Z), c2.Mul(Z),
		N, cfg)
}
Пример #27
0
func readOVF2DataBinary8(in io.Reader, array *data.Slice) {
	size := array.Size()
	data := array.Tensors()

	// OOMMF requires this number to be first to check the format
	controlnumber := readFloat64(in)
	if controlnumber != OVF_CONTROL_NUMBER_8 {
		panic("invalid OVF2 control number: " + fmt.Sprint(controlnumber))
	}

	ncomp := array.NComp()
	for iz := 0; iz < size[Z]; iz++ {
		for iy := 0; iy < size[Y]; iy++ {
			for ix := 0; ix < size[X]; ix++ {
				for c := 0; c < ncomp; c++ {
					data[c][iz][iy][ix] = float32(readFloat64(in))
				}
			}
		}
	}
}
Пример #28
0
// Writes the OMF header
func writeOVF1Header(out io.Writer, q *data.Slice, meta data.Meta) {
	gridsize := q.Size()
	cellsize := meta.CellSize

	hdr(out, "OOMMF", "rectangular mesh v1.0")
	hdr(out, "Segment count", "1")
	hdr(out, "Begin", "Segment")

	hdr(out, "Begin", "Header")

	dsc(out, "Time (s)", meta.Time)
	hdr(out, "Title", meta.Name)
	hdr(out, "meshtype", "rectangular")
	hdr(out, "meshunit", "m")
	hdr(out, "xbase", cellsize[X]/2)
	hdr(out, "ybase", cellsize[Y]/2)
	hdr(out, "zbase", cellsize[Z]/2)
	hdr(out, "xstepsize", cellsize[X])
	hdr(out, "ystepsize", cellsize[Y])
	hdr(out, "zstepsize", cellsize[Z])
	hdr(out, "xmin", 0)
	hdr(out, "ymin", 0)
	hdr(out, "zmin", 0)
	hdr(out, "xmax", cellsize[X]*float64(gridsize[X]))
	hdr(out, "ymax", cellsize[Y]*float64(gridsize[Y]))
	hdr(out, "zmax", cellsize[Z]*float64(gridsize[Z]))
	hdr(out, "xnodes", gridsize[X])
	hdr(out, "ynodes", gridsize[Y])
	hdr(out, "znodes", gridsize[Z])
	hdr(out, "ValueRangeMinMag", 1e-08) // not so "optional" as the OOMMF manual suggests...
	hdr(out, "ValueRangeMaxMag", 1)     // TODO
	hdr(out, "valueunit", meta.Unit)
	hdr(out, "valuemultiplier", 1)

	hdr(out, "End", "Header")
}
Пример #29
0
func writeVTKCellData(out io.Writer, q *data.Slice, meta data.Meta, dataformat string) (err error) {
	N := q.NComp()
	data := q.Tensors()
	switch N {
	case 1:
		fmt.Fprintf(out, "\t\t\t<PointData Scalars=\"%s\">\n", meta.Name)
		fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n\t\t\t\t\t", meta.Name, N, dataformat)
	case 3:
		fmt.Fprintf(out, "\t\t\t<PointData Vectors=\"%s\">\n", meta.Name)
		fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n\t\t\t\t\t", meta.Name, N, dataformat)
	case 6, 9:
		fmt.Fprintf(out, "\t\t\t<PointData Tensors=\"%s\">\n", meta.Name)
		fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n\t\t\t\t\t", meta.Name, 9, dataformat) // must be 9!
	default:
		log.Fatalf("vtk: cannot handle %v components", N)
	}
	gridsize := q.Size()
	switch dataformat {
	case "ascii":
		for k := 0; k < gridsize[2]; k++ {
			for j := 0; j < gridsize[1]; j++ {
				for i := 0; i < gridsize[0]; i++ {
					// if symmetric tensor manage it appart to write the full 9 components
					if N == 6 {
						fmt.Fprint(out, data[0][k][j][i], " ")
						fmt.Fprint(out, data[1][k][j][i], " ")
						fmt.Fprint(out, data[2][k][j][i], " ")
						fmt.Fprint(out, data[1][k][j][i], " ")
						fmt.Fprint(out, data[3][k][j][i], " ")
						fmt.Fprint(out, data[4][k][j][i], " ")
						fmt.Fprint(out, data[2][k][j][i], " ")
						fmt.Fprint(out, data[4][k][j][i], " ")
						fmt.Fprint(out, data[5][k][j][i], " ")
					} else {
						for c := 0; c < N; c++ {
							fmt.Fprint(out, data[c][k][j][i], " ")
						}
					}
				}
			}
		}
	case "binary":
		// Inlined for performance, terabytes of data will pass here...
		buffer := new(bytes.Buffer)
		for k := 0; k < gridsize[2]; k++ {
			for j := 0; j < gridsize[1]; j++ {
				for i := 0; i < gridsize[0]; i++ {
					// if symmetric tensor manage it appart to write the full 9 components
					if N == 6 {
						binary.Write(buffer, binary.LittleEndian, data[0][k][j][i])
						binary.Write(buffer, binary.LittleEndian, data[1][k][j][i])
						binary.Write(buffer, binary.LittleEndian, data[2][k][j][i])
						binary.Write(buffer, binary.LittleEndian, data[1][k][j][i])
						binary.Write(buffer, binary.LittleEndian, data[3][k][j][i])
						binary.Write(buffer, binary.LittleEndian, data[4][k][j][i])
						binary.Write(buffer, binary.LittleEndian, data[2][k][j][i])
						binary.Write(buffer, binary.LittleEndian, data[4][k][j][i])
						binary.Write(buffer, binary.LittleEndian, data[5][k][j][i])
					} else {
						for c := 0; c < N; c++ {
							binary.Write(buffer, binary.LittleEndian, data[c][k][j][i])
						}
					}
				}
			}
		}
		b64len := uint32(len(buffer.Bytes()))
		bufLen := new(bytes.Buffer)
		binary.Write(bufLen, binary.LittleEndian, b64len)
		base64out := base64.NewEncoder(base64.StdEncoding, out)
		base64out.Write(bufLen.Bytes())
		base64out.Write(buffer.Bytes())
		base64out.Close()
	default:
		panic(fmt.Errorf("vtk: illegal data format " + dataformat + ". Options are: ascii, binary"))
	}

	fmt.Fprintln(out, "\n\t\t\t\t</DataArray>")
	fmt.Fprintln(out, "\t\t\t</PointData>")
	return
}
Пример #30
0
// Returns a copy of in, allocated on GPU.
func GPUCopy(in *data.Slice) *data.Slice {
	s := NewSlice(in.NComp(), in.Size())
	data.Copy(s, in)
	return s
}