Пример #1
0
// Returns a classification for the vector, based on a vector input, using the KNN algorithm.
// See http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.
func (KNN *KNNClassifier) Predict(vector []float64, K int) string {

	convertedVector := util.FloatsToMatrix(vector)
	// Get the number of rows
	rows, _ := KNN.Data.Dims()
	rownumbers := make(map[int]float64)
	labels := make([]string, 0)
	maxmap := make(map[string]int)

	// Check what distance function we are using
	switch KNN.DistanceFunc {
	case "euclidean":
		{
			euclidean := pairwiseMetrics.NewEuclidean()
			for i := 0; i < rows; i++ {
				row := KNN.Data.RowView(i)
				rowMat := util.FloatsToMatrix(row)
				distance := euclidean.Distance(rowMat, convertedVector)
				rownumbers[i] = distance
			}
		}
	case "manhattan":
		{
			manhattan := pairwiseMetrics.NewEuclidean()
			for i := 0; i < rows; i++ {
				row := KNN.Data.RowView(i)
				rowMat := util.FloatsToMatrix(row)
				distance := manhattan.Distance(rowMat, convertedVector)
				rownumbers[i] = distance
			}
		}
	}

	sorted := util.SortIntMap(rownumbers)
	values := sorted[:K]

	for _, elem := range values {
		// It's when we access this map
		labels = append(labels, KNN.Labels[elem])

		if _, ok := maxmap[KNN.Labels[elem]]; ok {
			maxmap[KNN.Labels[elem]] += 1
		} else {
			maxmap[KNN.Labels[elem]] = 1
		}
	}

	sortedlabels := util.SortStringMap(maxmap)
	label := sortedlabels[0]

	return label
}
Пример #2
0
// Returns a classification for the vector, based on a vector input, using the KNN algorithm.
// See http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.
func (KNN *KNNClassifier) PredictOne(vector []float64) string {

	rows := KNN.TrainingData.Rows
	rownumbers := make(map[int]float64)
	labels := make([]string, 0)
	maxmap := make(map[string]int)

	convertedVector := util.FloatsToMatrix(vector)

	// Check what distance function we are using
	switch KNN.DistanceFunc {
	case "euclidean":
		{
			euclidean := pairwiseMetrics.NewEuclidean()
			for i := 0; i < rows; i++ {
				row := KNN.TrainingData.GetRowVectorWithoutClass(i)
				rowMat := util.FloatsToMatrix(row)
				distance := euclidean.Distance(rowMat, convertedVector)
				rownumbers[i] = distance
			}
		}
	case "manhattan":
		{
			manhattan := pairwiseMetrics.NewEuclidean()
			for i := 0; i < rows; i++ {
				row := KNN.TrainingData.GetRowVectorWithoutClass(i)
				rowMat := util.FloatsToMatrix(row)
				distance := manhattan.Distance(rowMat, convertedVector)
				rownumbers[i] = distance
			}
		}
	}

	sorted := util.SortIntMap(rownumbers)
	values := sorted[:KNN.NearestNeighbours]

	for _, elem := range values {
		label := KNN.TrainingData.GetClass(elem)
		labels = append(labels, label)

		if _, ok := maxmap[label]; ok {
			maxmap[label] += 1
		} else {
			maxmap[label] = 1
		}
	}

	sortedlabels := util.SortStringMap(maxmap)
	label := sortedlabels[0]

	return label
}
Пример #3
0
//Returns an average of the K nearest labels/variables, based on a vector input.
func (KNN *KNNRegressor) Predict(vector *mat64.Dense, K int) float64 {

	// Get the number of rows
	rows, _ := KNN.Data.Dims()
	rownumbers := make(map[int]float64)
	labels := make([]float64, 0)

	// Check what distance function we are using
	switch KNN.DistanceFunc {
	case "euclidean":
		{
			euclidean := pairwiseMetrics.NewEuclidean()
			for i := 0; i < rows; i++ {
				row := KNN.Data.RowView(i)
				rowMat := util.FloatsToMatrix(row)
				distance := euclidean.Distance(rowMat, vector)
				rownumbers[i] = distance
			}
		}
	case "manhattan":
		{
			manhattan := pairwiseMetrics.NewEuclidean()
			for i := 0; i < rows; i++ {
				row := KNN.Data.RowView(i)
				rowMat := util.FloatsToMatrix(row)
				distance := manhattan.Distance(rowMat, vector)
				rownumbers[i] = distance
			}
		}
	}

	sorted := util.SortIntMap(rownumbers)
	values := sorted[:K]

	var sum float64
	for _, elem := range values {
		value := KNN.Values[elem]
		labels = append(labels, value)
		sum += value
	}

	average := sum / float64(K)
	return average
}
Пример #4
0
func (KNN *KNNRegressor) Predict(vector *mat64.Dense, K int) float64 {
	// Get the number of rows
	rows, _ := KNN.Data.Dims()
	rownumbers := make(map[int]float64)
	labels := make([]float64, 0)

	// Check what distance function we are using
	var distanceFunc pairwise.PairwiseDistanceFunc
	switch KNN.DistanceFunc {
	case "euclidean":
		distanceFunc = pairwise.NewEuclidean()
	case "manhattan":
		distanceFunc = pairwise.NewManhattan()
	default:
		panic("unsupported distance function")
	}

	for i := 0; i < rows; i++ {
		row := KNN.Data.RowView(i)
		distance := distanceFunc.Distance(utilities.VectorToMatrix(row), vector)
		rownumbers[i] = distance
	}

	sorted := utilities.SortIntMap(rownumbers)
	values := sorted[:K]

	var sum float64
	for _, elem := range values {
		value := KNN.Values[elem]
		labels = append(labels, value)
		sum += value
	}

	average := sum / float64(K)
	return average
}
Пример #5
0
// Predict returns a classification for the vector, based on a vector input, using the KNN algorithm.
func (KNN *KNNClassifier) Predict(what base.FixedDataGrid) base.FixedDataGrid {

	// Check what distance function we are using
	var distanceFunc pairwise.PairwiseDistanceFunc
	switch KNN.DistanceFunc {
	case "euclidean":
		distanceFunc = pairwise.NewEuclidean()
	case "manhattan":
		distanceFunc = pairwise.NewManhattan()
	default:
		panic("unsupported distance function")

	}
	// Check Compatibility
	allAttrs := base.CheckCompatible(what, KNN.TrainingData)
	if allAttrs == nil {
		// Don't have the same Attributes
		return nil
	}

	// Remove the Attributes which aren't numeric
	allNumericAttrs := make([]base.Attribute, 0)
	for _, a := range allAttrs {
		if fAttr, ok := a.(*base.FloatAttribute); ok {
			allNumericAttrs = append(allNumericAttrs, fAttr)
		}
	}

	// Generate return vector
	ret := base.GeneratePredictionVector(what)

	// Resolve Attribute specifications for both
	whatAttrSpecs := base.ResolveAttributes(what, allNumericAttrs)
	trainAttrSpecs := base.ResolveAttributes(KNN.TrainingData, allNumericAttrs)

	// Reserve storage for most the most similar items
	distances := make(map[int]float64)

	// Reserve storage for voting map
	maxmap := make(map[string]int)

	// Reserve storage for row computations
	trainRowBuf := make([]float64, len(allNumericAttrs))
	predRowBuf := make([]float64, len(allNumericAttrs))

	// Iterate over all outer rows
	what.MapOverRows(whatAttrSpecs, func(predRow [][]byte, predRowNo int) (bool, error) {
		// Read the float values out
		for i, _ := range allNumericAttrs {
			predRowBuf[i] = base.UnpackBytesToFloat(predRow[i])
		}

		predMat := utilities.FloatsToMatrix(predRowBuf)

		// Find the closest match in the training data
		KNN.TrainingData.MapOverRows(trainAttrSpecs, func(trainRow [][]byte, srcRowNo int) (bool, error) {

			// Read the float values out
			for i, _ := range allNumericAttrs {
				trainRowBuf[i] = base.UnpackBytesToFloat(trainRow[i])
			}

			// Compute the distance
			trainMat := utilities.FloatsToMatrix(trainRowBuf)
			distances[srcRowNo] = distanceFunc.Distance(predMat, trainMat)
			return true, nil
		})

		sorted := utilities.SortIntMap(distances)
		values := sorted[:KNN.NearestNeighbours]

		// Reset maxMap
		for a := range maxmap {
			maxmap[a] = 0
		}

		// Refresh maxMap
		for _, elem := range values {
			label := base.GetClass(KNN.TrainingData, elem)
			if _, ok := maxmap[label]; ok {
				maxmap[label]++
			} else {
				maxmap[label] = 1
			}
		}

		// Sort the maxMap
		var maxClass string
		maxVal := -1
		for a := range maxmap {
			if maxmap[a] > maxVal {
				maxVal = maxmap[a]
				maxClass = a
			}
		}

		base.SetClass(ret, predRowNo, maxClass)
		return true, nil

	})

	return ret
}
Пример #6
0
// Predict returns a classification for the vector, based on a vector input, using the KNN algorithm.
func (KNN *KNNClassifier) Predict(what base.FixedDataGrid) base.FixedDataGrid {
	// Check what distance function we are using
	var distanceFunc pairwise.PairwiseDistanceFunc
	switch KNN.DistanceFunc {
	case "euclidean":
		distanceFunc = pairwise.NewEuclidean()
	case "manhattan":
		distanceFunc = pairwise.NewManhattan()
	default:
		panic("unsupported distance function")
	}
	// Check Compatibility
	allAttrs := base.CheckCompatible(what, KNN.TrainingData)
	if allAttrs == nil {
		// Don't have the same Attributes
		return nil
	}

	// Use optimised version if permitted
	if KNN.AllowOptimisations {
		if KNN.DistanceFunc == "euclidean" {
			if KNN.canUseOptimisations(what) {
				return KNN.optimisedEuclideanPredict(what.(*base.DenseInstances))
			}
		}
	}
	fmt.Println("Optimisations are switched off")

	// Remove the Attributes which aren't numeric
	allNumericAttrs := make([]base.Attribute, 0)
	for _, a := range allAttrs {
		if fAttr, ok := a.(*base.FloatAttribute); ok {
			allNumericAttrs = append(allNumericAttrs, fAttr)
		}
	}

	// Generate return vector
	ret := base.GeneratePredictionVector(what)

	// Resolve Attribute specifications for both
	whatAttrSpecs := base.ResolveAttributes(what, allNumericAttrs)
	trainAttrSpecs := base.ResolveAttributes(KNN.TrainingData, allNumericAttrs)

	// Reserve storage for most the most similar items
	distances := make(map[int]float64)

	// Reserve storage for voting map
	maxmap := make(map[string]int)

	// Reserve storage for row computations
	trainRowBuf := make([]float64, len(allNumericAttrs))
	predRowBuf := make([]float64, len(allNumericAttrs))

	_, maxRow := what.Size()
	curRow := 0

	// Iterate over all outer rows
	what.MapOverRows(whatAttrSpecs, func(predRow [][]byte, predRowNo int) (bool, error) {

		if (curRow%1) == 0 && curRow > 0 {
			fmt.Printf("KNN: %.2f %% done\n", float64(curRow)*100.0/float64(maxRow))
		}
		curRow++

		// Read the float values out
		for i, _ := range allNumericAttrs {
			predRowBuf[i] = base.UnpackBytesToFloat(predRow[i])
		}

		predMat := utilities.FloatsToMatrix(predRowBuf)

		// Find the closest match in the training data
		KNN.TrainingData.MapOverRows(trainAttrSpecs, func(trainRow [][]byte, srcRowNo int) (bool, error) {
			// Read the float values out
			for i, _ := range allNumericAttrs {
				trainRowBuf[i] = base.UnpackBytesToFloat(trainRow[i])
			}

			// Compute the distance
			trainMat := utilities.FloatsToMatrix(trainRowBuf)
			distances[srcRowNo] = distanceFunc.Distance(predMat, trainMat)
			return true, nil
		})

		sorted := utilities.SortIntMap(distances)
		values := sorted[:KNN.NearestNeighbours]

		maxClass := KNN.vote(maxmap, values)

		base.SetClass(ret, predRowNo, maxClass)
		return true, nil

	})

	return ret
}