func genSymbols(w *gen.CodeWriter, data *cldr.CLDR) { d, err := cldr.ParseDraft(*draft) if err != nil { log.Fatalf("invalid draft level: %v", err) } nNumberSystems := system(len(systemMap)) type symbols [NumSymbolTypes]string type key struct { tag int // from language.CompactIndex system system } symbolMap := map[key]*symbols{} defaults := map[int]system{} for _, lang := range data.Locales() { ldml := data.RawLDML(lang) if ldml.Numbers == nil { continue } langIndex, ok := language.CompactIndex(language.MustParse(lang)) if !ok { log.Fatalf("No compact index for language %s", lang) } if d := ldml.Numbers.DefaultNumberingSystem; len(d) > 0 { defaults[langIndex] = getNumberSystem(d[0].Data()) } syms := cldr.MakeSlice(&ldml.Numbers.Symbols) syms.SelectDraft(d) for _, sym := range ldml.Numbers.Symbols { if sym.NumberSystem == "" { // This is just linking the default of root to "latn". continue } symbolMap[key{langIndex, getNumberSystem(sym.NumberSystem)}] = &symbols{ SymDecimal: getFirst("decimal", sym.Decimal), SymGroup: getFirst("group", sym.Group), SymList: getFirst("list", sym.List), SymPercentSign: getFirst("percentSign", sym.PercentSign), SymPlusSign: getFirst("plusSign", sym.PlusSign), SymMinusSign: getFirst("minusSign", sym.MinusSign), SymExponential: getFirst("exponential", sym.Exponential), SymSuperscriptingExponent: getFirst("superscriptingExponent", sym.SuperscriptingExponent), SymPerMille: getFirst("perMille", sym.PerMille), SymInfinity: getFirst("infinity", sym.Infinity), SymNan: getFirst("nan", sym.Nan), SymTimeSeparator: getFirst("timeSeparator", sym.TimeSeparator), } } } // Expand all values. for k, syms := range symbolMap { for t := SymDecimal; t < NumSymbolTypes; t++ { p := k.tag for syms[t] == "" { p = int(internal.Parent[p]) if pSyms, ok := symbolMap[key{p, k.system}]; ok && (*pSyms)[t] != "" { syms[t] = (*pSyms)[t] break } if p == 0 /* und */ { // Default to root, latn. syms[t] = (*symbolMap[key{}])[t] } } } } // Unique the symbol sets and write the string data. m := map[symbols]int{} sb := stringset.NewBuilder() symIndex := [][NumSymbolTypes]byte{} for ns := system(0); ns < nNumberSystems; ns++ { for _, l := range data.Locales() { langIndex, _ := language.CompactIndex(language.MustParse(l)) s := symbolMap[key{langIndex, ns}] if s == nil { continue } if _, ok := m[*s]; !ok { m[*s] = len(symIndex) sb.Add(s[:]...) var x [NumSymbolTypes]byte for i := SymDecimal; i < NumSymbolTypes; i++ { x[i] = byte(sb.Index((*s)[i])) } symIndex = append(symIndex, x) } } } w.WriteVar("symIndex", symIndex) w.WriteVar("symData", sb.Set()) // resolveSymbolIndex gets the index from the closest matching locale, // including the locale itself. resolveSymbolIndex := func(langIndex int, ns system) byte { for { if sym := symbolMap[key{langIndex, ns}]; sym != nil { return byte(m[*sym]) } if langIndex == 0 { return 0 // und, latn } langIndex = int(internal.Parent[langIndex]) } } // Create an index with the symbols for each locale for the latn numbering // system. If this is not the default, or the only one, for a locale, we // will overwrite the value later. var langToDefaults [language.NumCompactTags]byte for _, l := range data.Locales() { langIndex, _ := language.CompactIndex(language.MustParse(l)) langToDefaults[langIndex] = resolveSymbolIndex(langIndex, 0) } // Delete redundant entries. for _, l := range data.Locales() { langIndex, _ := language.CompactIndex(language.MustParse(l)) def := defaults[langIndex] syms := symbolMap[key{langIndex, def}] if syms == nil { continue } for ns := system(0); ns < nNumberSystems; ns++ { if ns == def { continue } if altSyms, ok := symbolMap[key{langIndex, ns}]; ok && *altSyms == *syms { delete(symbolMap, key{langIndex, ns}) } } } // Create a sorted list of alternatives per language. This will only need to // be referenced if a user specified an alternative numbering system. var langToAlt []altSymData for _, l := range data.Locales() { langIndex, _ := language.CompactIndex(language.MustParse(l)) start := len(langToAlt) if start > 0x7F { log.Fatal("Number of alternative assignments > 0x7F") } // Create the entry for the default value. def := defaults[langIndex] langToAlt = append(langToAlt, altSymData{ compactTag: uint16(langIndex), system: def, symIndex: resolveSymbolIndex(langIndex, def), }) for ns := system(0); ns < nNumberSystems; ns++ { if def == ns { continue } if sym := symbolMap[key{langIndex, ns}]; sym != nil { langToAlt = append(langToAlt, altSymData{ compactTag: uint16(langIndex), system: ns, symIndex: resolveSymbolIndex(langIndex, ns), }) } } if def == 0 && len(langToAlt) == start+1 { // No additional data: erase the entry. langToAlt = langToAlt[:start] } else { // Overwrite the entry in langToDefaults. langToDefaults[langIndex] = 0x80 | byte(start) } } w.WriteComment(` langToDefaults maps a compact language index to the default numbering system and default symbol set`) w.WriteVar("langToDefaults", langToDefaults) w.WriteComment(` langToAlt is a list of numbering system and symbol set pairs, sorted and marked by compact language index.`) w.WriteVar("langToAlt", langToAlt) }
// genSymbols generates the symbols used for currencies. Most symbols are // defined in root and there is only very small variation per language. // The following rules apply: // - A symbol can be requested as normal or narrow. // - If a symbol is not defined for a currency, it defaults to its ISO code. func (b *builder) genSymbols(w *gen.CodeWriter, data *cldr.CLDR) { d, err := cldr.ParseDraft(*draft) if err != nil { log.Fatalf("filter: %v", err) } const ( normal = iota narrow numTypes ) // language -> currency -> type -> symbol var symbols [language.NumCompactTags][][numTypes]*string // Collect symbol information per language. for _, lang := range data.Locales() { ldml := data.RawLDML(lang) if ldml.Numbers == nil || ldml.Numbers.Currencies == nil { continue } langIndex, ok := language.CompactIndex(language.MustParse(lang)) if !ok { log.Fatalf("No compact index for language %s", lang) } symbols[langIndex] = make([][numTypes]*string, b.numCurrencies+1) for _, c := range ldml.Numbers.Currencies.Currency { syms := cldr.MakeSlice(&c.Symbol) syms.SelectDraft(d) for _, sym := range c.Symbol { v := sym.Data() if v == c.Type { // We define "" to mean the ISO symbol. v = "" } cur := b.currencies.Index([]byte(c.Type)) // XXX gets reassigned to 0 in the package's code. if c.Type == "XXX" { cur = 0 } if cur == -1 { fmt.Println("Unsupported:", c.Type) continue } switch sym.Alt { case "": symbols[langIndex][cur][normal] = &v case "narrow": symbols[langIndex][cur][narrow] = &v } } } } // Remove values identical to the parent. for langIndex, data := range symbols { for curIndex, curs := range data { for typ, sym := range curs { if sym == nil { continue } for p := uint16(langIndex); p != 0; { p = internal.Parent[p] x := symbols[p] if x == nil { continue } if v := x[curIndex][typ]; v != nil || p == 0 { // Value is equal to the default value root value is undefined. parentSym := "" if v != nil { parentSym = *v } if parentSym == *sym { // Value is the same as parent. data[curIndex][typ] = nil } break } } } } } // Create symbol index. symbolData := []byte{0} symbolLookup := map[string]uint16{"": 0} // 0 means default, so block that value. for _, data := range symbols { for _, curs := range data { for _, sym := range curs { if sym == nil { continue } if _, ok := symbolLookup[*sym]; !ok { symbolLookup[*sym] = uint16(len(symbolData)) symbolData = append(symbolData, byte(len(*sym))) symbolData = append(symbolData, *sym...) } } } } w.WriteComment(` symbols holds symbol data of the form <n> <str>, where n is the length of the symbol string str.`) w.WriteConst("symbols", string(symbolData)) // Create index from language to currency lookup to symbol. type curToIndex struct{ cur, idx uint16 } w.WriteType(curToIndex{}) prefix := []string{"normal", "narrow"} // Create data for regular and narrow symbol data. for typ := normal; typ <= narrow; typ++ { indexes := []curToIndex{} // maps currency to symbol index languages := []uint16{} for _, data := range symbols { languages = append(languages, uint16(len(indexes))) for curIndex, curs := range data { if sym := curs[typ]; sym != nil { indexes = append(indexes, curToIndex{uint16(curIndex), symbolLookup[*sym]}) } } } languages = append(languages, uint16(len(indexes))) w.WriteVar(prefix[typ]+"LangIndex", languages) w.WriteVar(prefix[typ]+"SymIndex", indexes) } }
// genFormats generates the lookup table for decimal, scientific and percent // patterns. // // CLDR allows for patterns to be different per language for different numbering // systems. In practice the patterns are set to be consistent for a language // independent of the numbering system. genFormats verifies that no language // deviates from this. func genFormats(w *gen.CodeWriter, data *cldr.CLDR) { d, err := cldr.ParseDraft(*draft) if err != nil { log.Fatalf("invalid draft level: %v", err) } // Fill the first slot with a dummy so we can identify unspecified tags. formats := []number.Format{{}} patterns := map[string]int{} // TODO: It would be possible to eliminate two of these slices by having // another indirection and store a reference to the combination of patterns. decimal := make([]byte, language.NumCompactTags) scientific := make([]byte, language.NumCompactTags) percent := make([]byte, language.NumCompactTags) for _, lang := range data.Locales() { ldml := data.RawLDML(lang) if ldml.Numbers == nil { continue } langIndex, ok := language.CompactIndex(language.MustParse(lang)) if !ok { log.Fatalf("No compact index for language %s", lang) } type patternSlice []*struct { cldr.Common Numbers string `xml:"numbers,attr"` Count string `xml:"count,attr"` } add := func(name string, tags []byte, ps patternSlice) { sl := cldr.MakeSlice(&ps) sl.SelectDraft(d) if len(ps) == 0 { return } if len(ps) > 2 || len(ps) == 2 && ps[0] != ps[1] { log.Fatalf("Inconsistent %d patterns for language %s", name, lang) } s := ps[0].Data() index, ok := patterns[s] if !ok { nf, err := number.ParsePattern(s) if err != nil { log.Fatal(err) } index = len(formats) patterns[s] = index formats = append(formats, *nf) } tags[langIndex] = byte(index) } for _, df := range ldml.Numbers.DecimalFormats { for _, l := range df.DecimalFormatLength { if l.Type != "" { continue } for _, f := range l.DecimalFormat { add("decimal", decimal, f.Pattern) } } } for _, df := range ldml.Numbers.ScientificFormats { for _, l := range df.ScientificFormatLength { if l.Type != "" { continue } for _, f := range l.ScientificFormat { add("scientific", scientific, f.Pattern) } } } for _, df := range ldml.Numbers.PercentFormats { for _, l := range df.PercentFormatLength { if l.Type != "" { continue } for _, f := range l.PercentFormat { add("percent", percent, f.Pattern) } } } } // Complete the parent tag array to reflect inheritance. An index of 0 // indicates an unspecified value. for _, data := range [][]byte{decimal, scientific, percent} { for i := range data { p := uint16(i) for ; data[p] == 0; p = internal.Parent[p] { } data[i] = data[p] } } w.WriteVar("tagToDecimal", decimal) w.WriteVar("tagToScientific", scientific) w.WriteVar("tagToPercent", percent) value := strings.Replace(fmt.Sprintf("%#v", formats), "number.", "", -1) // Break up the lines. This won't give ideal perfect formatting, but it is // better than one huge line. value = strings.Replace(value, ", ", ",\n", -1) fmt.Fprintf(w, "var formats = %s\n", value) }