func (d *DIBuilder) descriptorNamed(t *types.Named) llvm.Metadata { var diFile llvm.Metadata var line int if file := d.fset.File(t.Obj().Pos()); file != nil { line = file.Line(t.Obj().Pos()) diFile = d.getFile(file) } // Create a placeholder for the named type, to terminate cycles. name := t.Obj().Name() placeholder := d.builder.CreateReplaceableCompositeType(d.scope(), llvm.DIReplaceableCompositeType{ Tag: dwarf.TagStructType, Name: name, File: diFile, Line: line, }) d.types.Set(t, placeholder) typedef := d.builder.CreateTypedef(llvm.DITypedef{ Type: d.DIType(t.Underlying()), Name: name, File: diFile, Line: line, }) placeholder.ReplaceAllUsesWith(typedef) return typedef }
// addRuntimeType is called for each concrete type that can be the // dynamic type of some interface or reflect.Value. // Adapted from needMethods in go/ssa/builder.go // func (r *rta) addRuntimeType(T types.Type, skip bool) { if prev, ok := r.result.RuntimeTypes.At(T).(bool); ok { if skip && !prev { r.result.RuntimeTypes.Set(T, skip) } return } r.result.RuntimeTypes.Set(T, skip) mset := r.prog.MethodSets.MethodSet(T) if _, ok := T.Underlying().(*types.Interface); !ok { // T is a new concrete type. for i, n := 0, mset.Len(); i < n; i++ { sel := mset.At(i) m := sel.Obj() if m.Exported() { // Exported methods are always potentially callable via reflection. r.addReachable(r.prog.Method(sel), true) } } // Add callgraph edge for each existing dynamic // "invoke"-mode call via that interface. for _, I := range r.interfaces(T) { sites, _ := r.invokeSites.At(I).([]ssa.CallInstruction) for _, site := range sites { r.addInvokeEdge(site, T) } } } // Precondition: T is not a method signature (*Signature with Recv()!=nil). // Recursive case: skip => don't call makeMethods(T). // Each package maintains its own set of types it has visited. var n *types.Named switch T := T.(type) { case *types.Named: n = T case *types.Pointer: n, _ = T.Elem().(*types.Named) } if n != nil { owner := n.Obj().Pkg() if owner == nil { return // built-in error type } } // Recursion over signatures of each exported method. for i := 0; i < mset.Len(); i++ { if mset.At(i).Obj().Exported() { sig := mset.At(i).Type().(*types.Signature) r.addRuntimeType(sig.Params(), true) // skip the Tuple itself r.addRuntimeType(sig.Results(), true) // skip the Tuple itself } } switch t := T.(type) { case *types.Basic: // nop case *types.Interface: // nop---handled by recursion over method set. case *types.Pointer: r.addRuntimeType(t.Elem(), false) case *types.Slice: r.addRuntimeType(t.Elem(), false) case *types.Chan: r.addRuntimeType(t.Elem(), false) case *types.Map: r.addRuntimeType(t.Key(), false) r.addRuntimeType(t.Elem(), false) case *types.Signature: if t.Recv() != nil { panic(fmt.Sprintf("Signature %s has Recv %s", t, t.Recv())) } r.addRuntimeType(t.Params(), true) // skip the Tuple itself r.addRuntimeType(t.Results(), true) // skip the Tuple itself case *types.Named: // A pointer-to-named type can be derived from a named // type via reflection. It may have methods too. r.addRuntimeType(types.NewPointer(T), false) // Consider 'type T struct{S}' where S has methods. // Reflection provides no way to get from T to struct{S}, // only to S, so the method set of struct{S} is unwanted, // so set 'skip' flag during recursion. r.addRuntimeType(t.Underlying(), true) case *types.Array: r.addRuntimeType(t.Elem(), false) case *types.Struct: for i, n := 0, t.NumFields(); i < n; i++ { r.addRuntimeType(t.Field(i).Type(), false) } case *types.Tuple: for i, n := 0, t.Len(); i < n; i++ { r.addRuntimeType(t.At(i).Type(), false) } default: panic(T) } }