Пример #1
0
// UnaryOp returns the result of the unary expression op y.
// The operation must be defined for the operand.
// If size >= 0 it specifies the ^ (xor) result size in bytes.
// If y is Unknown, the result is Unknown.
//
func UnaryOp(op token.Token, y Value, size int) Value {
	switch op {
	case token.ADD:
		switch y.(type) {
		case unknownVal, int64Val, intVal, floatVal, complexVal:
			return y
		}

	case token.SUB:
		switch y := y.(type) {
		case unknownVal:
			return y
		case int64Val:
			if z := -y; z != y {
				return z // no overflow
			}
			return normInt(new(big.Int).Neg(big.NewInt(int64(y))))
		case intVal:
			return normInt(new(big.Int).Neg(y.val))
		case floatVal:
			return normFloat(new(big.Rat).Neg(y.val))
		case complexVal:
			return normComplex(new(big.Rat).Neg(y.re), new(big.Rat).Neg(y.im))
		}

	case token.XOR:
		var z big.Int
		switch y := y.(type) {
		case unknownVal:
			return y
		case int64Val:
			z.Not(big.NewInt(int64(y)))
		case intVal:
			z.Not(y.val)
		default:
			goto Error
		}
		// For unsigned types, the result will be negative and
		// thus "too large": We must limit the result size to
		// the type's size.
		if size >= 0 {
			s := uint(size) * 8
			z.AndNot(&z, new(big.Int).Lsh(big.NewInt(-1), s)) // z &^= (-1)<<s
		}
		return normInt(&z)

	case token.NOT:
		switch y := y.(type) {
		case unknownVal:
			return y
		case boolVal:
			return !y
		}
	}

Error:
	panic(fmt.Sprintf("invalid unary operation %s%v", op, y))
}
Пример #2
0
// unaryOpConst returns the result of the constant evaluation op x where x is of the given type.
func unaryOpConst(x interface{}, op token.Token, typ *Basic) interface{} {
	switch op {
	case token.ADD:
		return x // nothing to do
	case token.SUB:
		switch x := x.(type) {
		case int64:
			if z := -x; z != x {
				return z // no overflow
			}
			// overflow - need to convert to big.Int
			return normalizeIntConst(new(big.Int).Neg(big.NewInt(x)))
		case *big.Int:
			return normalizeIntConst(new(big.Int).Neg(x))
		case *big.Rat:
			return normalizeRatConst(new(big.Rat).Neg(x))
		case complex:
			return newComplex(new(big.Rat).Neg(x.re), new(big.Rat).Neg(x.im))
		}
	case token.XOR:
		var z big.Int
		switch x := x.(type) {
		case int64:
			z.Not(big.NewInt(x))
		case *big.Int:
			z.Not(x)
		default:
			unreachable()
		}
		// For unsigned types, the result will be negative and
		// thus "too large": We must limit the result size to
		// the type's size.
		if typ.Info&IsUnsigned != 0 {
			s := uint(typ.Size) * 8
			if s == 0 {
				// platform-specific type
				// TODO(gri) this needs to be factored out
				switch typ.Kind {
				case Uint:
					s = intBits
				case Uintptr:
					s = ptrBits
				default:
					unreachable()
				}
			}
			// z &^= (-1)<<s
			z.AndNot(&z, new(big.Int).Lsh(big.NewInt(-1), s))
		}
		return normalizeIntConst(&z)
	case token.NOT:
		return !x.(bool)
	}
	unreachable()
	return nil
}
Пример #3
0
// UnaryOp does a unary operation on a unary expression.
func UnaryOp(op scan.Type, y Value, prec uint) Value {
	switch op {
	case scan.Plus:
		switch y.(type) {
		case unknownVal, int64Val, intVal:
			return y
		}

	case scan.Minus:
		switch y := y.(type) {
		case unknownVal:
			return y
		case int64Val:
			if z := -y; z != y {
				return z // no overflow
			}
			return normInt(new(big.Int).Neg(big.NewInt(int64(y))))
		case intVal:
			return normInt(new(big.Int).Neg(y.val))
		}

	case scan.Negate:
		var z big.Int
		switch y := y.(type) {
		case unknownVal:
			return y
		case int64Val:
			z.Not(big.NewInt(int64(y)))
		case intVal:
			z.Not(y.val)
		default:
			goto Error
		}
		return normInt(&z)

	case scan.Not:
		switch y := y.(type) {
		case unknownVal:
			return y
		case int64Val:
			if y == 0 {
				return int64Val(1)
			}
			return int64Val(0)
		case intVal:
			z := new(big.Int).SetInt64(0)
			if y.val.Sign() == 0 {
				z.SetInt64(1)
			}
			return normInt(z)
		}
	}

Error:
	panic(fmt.Sprintf("invalid unary operation %s%v", op, y))
}
Пример #4
0
func unaryIntOp(x *big.Int, op token.Token) interface{} {
	var z big.Int
	switch op {
	case token.ADD:
		return z.Set(x)
	case token.SUB:
		return z.Neg(x)
	case token.XOR:
		return z.Not(x)
	}
	panic("unreachable")
}
Пример #5
0
// unaryOpConst returns the result of the constant evaluation op x where x is of the given type.
func unaryOpConst(x interface{}, ctxt *Context, op token.Token, typ *Basic) interface{} {
	switch op {
	case token.ADD:
		return x // nothing to do
	case token.SUB:
		switch x := x.(type) {
		case int64:
			if z := -x; z != x {
				return z // no overflow
			}
			// overflow - need to convert to big.Int
			return normalizeIntConst(new(big.Int).Neg(big.NewInt(x)))
		case *big.Int:
			return normalizeIntConst(new(big.Int).Neg(x))
		case *big.Rat:
			return normalizeRatConst(new(big.Rat).Neg(x))
		case Complex:
			return newComplex(new(big.Rat).Neg(x.Re), new(big.Rat).Neg(x.Im))
		}
	case token.XOR:
		var z big.Int
		switch x := x.(type) {
		case int64:
			z.Not(big.NewInt(x))
		case *big.Int:
			z.Not(x)
		default:
			unreachable()
		}
		// For unsigned types, the result will be negative and
		// thus "too large": We must limit the result size to
		// the type's size.
		if typ.Info&IsUnsigned != 0 {
			s := uint(ctxt.sizeof(typ)) * 8
			z.AndNot(&z, new(big.Int).Lsh(big.NewInt(-1), s)) // z &^= (-1)<<s
		}
		return normalizeIntConst(&z)
	case token.NOT:
		return !x.(bool)
	}
	unreachable()
	return nil
}
Пример #6
0
// Just like Call() but does not transfer 'value' or modify the callDepth.
func (vm *VM) call(caller, callee *Account, code, input []byte, value int64, gas *int64) (output []byte, err error) {
	dbg.Printf("(%d) (%X) %X (code=%d) gas: %v (d) %X\n", vm.callDepth, caller.Address[:4], callee.Address, len(callee.Code), *gas, input)

	var (
		pc     int64 = 0
		stack        = NewStack(dataStackCapacity, gas, &err)
		memory       = make([]byte, memoryCapacity)
	)

	for {

		// Use BaseOp gas.
		if useGasNegative(gas, GasBaseOp, &err) {
			return nil, err
		}

		var op = codeGetOp(code, pc)
		dbg.Printf("(pc) %-3d (op) %-14s (st) %-4d ", pc, op.String(), stack.Len())

		switch op {

		case ADD: // 0x01
			x, y := stack.Pop(), stack.Pop()
			xb := new(big.Int).SetBytes(x[:])
			yb := new(big.Int).SetBytes(y[:])
			sum := new(big.Int).Add(xb, yb)
			res := LeftPadWord256(U256(sum).Bytes())
			stack.Push(res)
			dbg.Printf(" %v + %v = %v (%X)\n", xb, yb, sum, res)

		case MUL: // 0x02
			x, y := stack.Pop(), stack.Pop()
			xb := new(big.Int).SetBytes(x[:])
			yb := new(big.Int).SetBytes(y[:])
			prod := new(big.Int).Mul(xb, yb)
			res := LeftPadWord256(U256(prod).Bytes())
			stack.Push(res)
			dbg.Printf(" %v * %v = %v (%X)\n", xb, yb, prod, res)

		case SUB: // 0x03
			x, y := stack.Pop(), stack.Pop()
			xb := new(big.Int).SetBytes(x[:])
			yb := new(big.Int).SetBytes(y[:])
			diff := new(big.Int).Sub(xb, yb)
			res := LeftPadWord256(U256(diff).Bytes())
			stack.Push(res)
			dbg.Printf(" %v - %v = %v (%X)\n", xb, yb, diff, res)

		case DIV: // 0x04
			x, y := stack.Pop(), stack.Pop()
			if y.IsZero() {
				stack.Push(Zero256)
				dbg.Printf(" %x / %x = %v\n", x, y, 0)
			} else {
				xb := new(big.Int).SetBytes(x[:])
				yb := new(big.Int).SetBytes(y[:])
				div := new(big.Int).Div(xb, yb)
				res := LeftPadWord256(U256(div).Bytes())
				stack.Push(res)
				dbg.Printf(" %v / %v = %v (%X)\n", xb, yb, div, res)
			}

		case SDIV: // 0x05
			x, y := stack.Pop(), stack.Pop()
			if y.IsZero() {
				stack.Push(Zero256)
				dbg.Printf(" %x / %x = %v\n", x, y, 0)
			} else {
				xb := S256(new(big.Int).SetBytes(x[:]))
				yb := S256(new(big.Int).SetBytes(y[:]))
				div := new(big.Int).Div(xb, yb)
				res := LeftPadWord256(U256(div).Bytes())
				stack.Push(res)
				dbg.Printf(" %v / %v = %v (%X)\n", xb, yb, div, res)
			}

		case MOD: // 0x06
			x, y := stack.Pop(), stack.Pop()
			if y.IsZero() {
				stack.Push(Zero256)
				dbg.Printf(" %v %% %v = %v\n", x, y, 0)
			} else {
				xb := new(big.Int).SetBytes(x[:])
				yb := new(big.Int).SetBytes(y[:])
				mod := new(big.Int).Mod(xb, yb)
				res := LeftPadWord256(U256(mod).Bytes())
				stack.Push(res)
				dbg.Printf(" %v %% %v = %v (%X)\n", xb, yb, mod, res)
			}

		case SMOD: // 0x07
			x, y := stack.Pop(), stack.Pop()
			if y.IsZero() {
				stack.Push(Zero256)
				dbg.Printf(" %v %% %v = %v\n", x, y, 0)
			} else {
				xb := S256(new(big.Int).SetBytes(x[:]))
				yb := S256(new(big.Int).SetBytes(y[:]))
				mod := new(big.Int).Mod(xb, yb)
				res := LeftPadWord256(U256(mod).Bytes())
				stack.Push(res)
				dbg.Printf(" %v %% %v = %v (%X)\n", xb, yb, mod, res)
			}

		case ADDMOD: // 0x08
			x, y, z := stack.Pop(), stack.Pop(), stack.Pop()
			if z.IsZero() {
				stack.Push(Zero256)
				dbg.Printf(" %v %% %v = %v\n", x, y, 0)
			} else {
				xb := new(big.Int).SetBytes(x[:])
				yb := new(big.Int).SetBytes(y[:])
				zb := new(big.Int).SetBytes(z[:])
				add := new(big.Int).Add(xb, yb)
				mod := new(big.Int).Mod(add, zb)
				res := LeftPadWord256(U256(mod).Bytes())
				stack.Push(res)
				dbg.Printf(" %v + %v %% %v = %v (%X)\n",
					xb, yb, zb, mod, res)
			}

		case MULMOD: // 0x09
			x, y, z := stack.Pop(), stack.Pop(), stack.Pop()
			if z.IsZero() {
				stack.Push(Zero256)
				dbg.Printf(" %v %% %v = %v\n", x, y, 0)
			} else {
				xb := new(big.Int).SetBytes(x[:])
				yb := new(big.Int).SetBytes(y[:])
				zb := new(big.Int).SetBytes(z[:])
				mul := new(big.Int).Mul(xb, yb)
				mod := new(big.Int).Mod(mul, zb)
				res := LeftPadWord256(U256(mod).Bytes())
				stack.Push(res)
				dbg.Printf(" %v * %v %% %v = %v (%X)\n",
					xb, yb, zb, mod, res)
			}

		case EXP: // 0x0A
			x, y := stack.Pop(), stack.Pop()
			xb := new(big.Int).SetBytes(x[:])
			yb := new(big.Int).SetBytes(y[:])
			pow := new(big.Int).Exp(xb, yb, big.NewInt(0))
			res := LeftPadWord256(U256(pow).Bytes())
			stack.Push(res)
			dbg.Printf(" %v ** %v = %v (%X)\n", xb, yb, pow, res)

		case SIGNEXTEND: // 0x0B
			back := stack.Pop()
			backb := new(big.Int).SetBytes(back[:])
			if backb.Cmp(big.NewInt(31)) < 0 {
				bit := uint(backb.Uint64()*8 + 7)
				num := stack.Pop()
				numb := new(big.Int).SetBytes(num[:])
				mask := new(big.Int).Lsh(big.NewInt(1), bit)
				mask.Sub(mask, big.NewInt(1))
				if numb.Bit(int(bit)) == 1 {
					numb.Or(numb, mask.Not(mask))
				} else {
					numb.Add(numb, mask)
				}
				res := LeftPadWord256(U256(numb).Bytes())
				dbg.Printf(" = %v (%X)", numb, res)
				stack.Push(res)
			}

		case LT: // 0x10
			x, y := stack.Pop(), stack.Pop()
			xb := new(big.Int).SetBytes(x[:])
			yb := new(big.Int).SetBytes(y[:])
			if xb.Cmp(yb) < 0 {
				stack.Push64(1)
				dbg.Printf(" %v < %v = %v\n", xb, yb, 1)
			} else {
				stack.Push(Zero256)
				dbg.Printf(" %v < %v = %v\n", xb, yb, 0)
			}

		case GT: // 0x11
			x, y := stack.Pop(), stack.Pop()
			xb := new(big.Int).SetBytes(x[:])
			yb := new(big.Int).SetBytes(y[:])
			if xb.Cmp(yb) > 0 {
				stack.Push64(1)
				dbg.Printf(" %v > %v = %v\n", xb, yb, 1)
			} else {
				stack.Push(Zero256)
				dbg.Printf(" %v > %v = %v\n", xb, yb, 0)
			}

		case SLT: // 0x12
			x, y := stack.Pop(), stack.Pop()
			xb := S256(new(big.Int).SetBytes(x[:]))
			yb := S256(new(big.Int).SetBytes(y[:]))
			if xb.Cmp(yb) < 0 {
				stack.Push64(1)
				dbg.Printf(" %v < %v = %v\n", xb, yb, 1)
			} else {
				stack.Push(Zero256)
				dbg.Printf(" %v < %v = %v\n", xb, yb, 0)
			}

		case SGT: // 0x13
			x, y := stack.Pop(), stack.Pop()
			xb := S256(new(big.Int).SetBytes(x[:]))
			yb := S256(new(big.Int).SetBytes(y[:]))
			if xb.Cmp(yb) > 0 {
				stack.Push64(1)
				dbg.Printf(" %v > %v = %v\n", xb, yb, 1)
			} else {
				stack.Push(Zero256)
				dbg.Printf(" %v > %v = %v\n", xb, yb, 0)
			}

		case EQ: // 0x14
			x, y := stack.Pop(), stack.Pop()
			if bytes.Equal(x[:], y[:]) {
				stack.Push64(1)
				dbg.Printf(" %X == %X = %v\n", x, y, 1)
			} else {
				stack.Push(Zero256)
				dbg.Printf(" %X == %X = %v\n", x, y, 0)
			}

		case ISZERO: // 0x15
			x := stack.Pop()
			if x.IsZero() {
				stack.Push64(1)
				dbg.Printf(" %v == 0 = %v\n", x, 1)
			} else {
				stack.Push(Zero256)
				dbg.Printf(" %v == 0 = %v\n", x, 0)
			}

		case AND: // 0x16
			x, y := stack.Pop(), stack.Pop()
			z := [32]byte{}
			for i := 0; i < 32; i++ {
				z[i] = x[i] & y[i]
			}
			stack.Push(z)
			dbg.Printf(" %X & %X = %X\n", x, y, z)

		case OR: // 0x17
			x, y := stack.Pop(), stack.Pop()
			z := [32]byte{}
			for i := 0; i < 32; i++ {
				z[i] = x[i] | y[i]
			}
			stack.Push(z)
			dbg.Printf(" %X | %X = %X\n", x, y, z)

		case XOR: // 0x18
			x, y := stack.Pop(), stack.Pop()
			z := [32]byte{}
			for i := 0; i < 32; i++ {
				z[i] = x[i] ^ y[i]
			}
			stack.Push(z)
			dbg.Printf(" %X ^ %X = %X\n", x, y, z)

		case NOT: // 0x19
			x := stack.Pop()
			z := [32]byte{}
			for i := 0; i < 32; i++ {
				z[i] = ^x[i]
			}
			stack.Push(z)
			dbg.Printf(" !%X = %X\n", x, z)

		case BYTE: // 0x1A
			idx, val := stack.Pop64(), stack.Pop()
			res := byte(0)
			if idx < 32 {
				res = val[idx]
			}
			stack.Push64(int64(res))
			dbg.Printf(" => 0x%X\n", res)

		case SHA3: // 0x20
			if useGasNegative(gas, GasSha3, &err) {
				return nil, err
			}
			offset, size := stack.Pop64(), stack.Pop64()
			data, ok := subslice(memory, offset, size)
			if !ok {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}
			data = sha3.Sha3(data)
			stack.PushBytes(data)
			dbg.Printf(" => (%v) %X\n", size, data)

		case ADDRESS: // 0x30
			stack.Push(callee.Address)
			dbg.Printf(" => %X\n", callee.Address)

		case BALANCE: // 0x31
			addr := stack.Pop()
			if useGasNegative(gas, GasGetAccount, &err) {
				return nil, err
			}
			acc := vm.appState.GetAccount(addr)
			if acc == nil {
				return nil, firstErr(err, ErrUnknownAddress)
			}
			balance := acc.Balance
			stack.Push64(balance)
			dbg.Printf(" => %v (%X)\n", balance, addr)

		case ORIGIN: // 0x32
			stack.Push(vm.origin)
			dbg.Printf(" => %X\n", vm.origin)

		case CALLER: // 0x33
			stack.Push(caller.Address)
			dbg.Printf(" => %X\n", caller.Address)

		case CALLVALUE: // 0x34
			stack.Push64(value)
			dbg.Printf(" => %v\n", value)

		case CALLDATALOAD: // 0x35
			offset := stack.Pop64()
			data, ok := subslice(input, offset, 32)
			if !ok {
				return nil, firstErr(err, ErrInputOutOfBounds)
			}
			res := LeftPadWord256(data)
			stack.Push(res)
			dbg.Printf(" => 0x%X\n", res)

		case CALLDATASIZE: // 0x36
			stack.Push64(int64(len(input)))
			dbg.Printf(" => %d\n", len(input))

		case CALLDATACOPY: // 0x37
			memOff := stack.Pop64()
			inputOff := stack.Pop64()
			length := stack.Pop64()
			data, ok := subslice(input, inputOff, length)
			if !ok {
				return nil, firstErr(err, ErrInputOutOfBounds)
			}
			dest, ok := subslice(memory, memOff, length)
			if !ok {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}
			copy(dest, data)
			dbg.Printf(" => [%v, %v, %v] %X\n", memOff, inputOff, length, data)

		case CODESIZE: // 0x38
			l := int64(len(code))
			stack.Push64(l)
			dbg.Printf(" => %d\n", l)

		case CODECOPY: // 0x39
			memOff := stack.Pop64()
			codeOff := stack.Pop64()
			length := stack.Pop64()
			data, ok := subslice(code, codeOff, length)
			if !ok {
				return nil, firstErr(err, ErrCodeOutOfBounds)
			}
			dest, ok := subslice(memory, memOff, length)
			if !ok {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}
			copy(dest, data)
			dbg.Printf(" => [%v, %v, %v] %X\n", memOff, codeOff, length, data)

		case GASPRICE_DEPRECATED: // 0x3A
			stack.Push(Zero256)
			dbg.Printf(" => %X (GASPRICE IS DEPRECATED)\n")

		case EXTCODESIZE: // 0x3B
			addr := stack.Pop()
			if useGasNegative(gas, GasGetAccount, &err) {
				return nil, err
			}
			acc := vm.appState.GetAccount(addr)
			if acc == nil {
				return nil, firstErr(err, ErrUnknownAddress)
			}
			code := acc.Code
			l := int64(len(code))
			stack.Push64(l)
			dbg.Printf(" => %d\n", l)

		case EXTCODECOPY: // 0x3C
			addr := stack.Pop()
			if useGasNegative(gas, GasGetAccount, &err) {
				return nil, err
			}
			acc := vm.appState.GetAccount(addr)
			if acc == nil {
				return nil, firstErr(err, ErrUnknownAddress)
			}
			code := acc.Code
			memOff := stack.Pop64()
			codeOff := stack.Pop64()
			length := stack.Pop64()
			data, ok := subslice(code, codeOff, length)
			if !ok {
				return nil, firstErr(err, ErrCodeOutOfBounds)
			}
			dest, ok := subslice(memory, memOff, length)
			if !ok {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}
			copy(dest, data)
			dbg.Printf(" => [%v, %v, %v] %X\n", memOff, codeOff, length, data)

		case BLOCKHASH: // 0x40
			stack.Push(Zero256)
			dbg.Printf(" => 0x%X (NOT SUPPORTED)\n", stack.Peek().Bytes())

		case COINBASE: // 0x41
			stack.Push(Zero256)
			dbg.Printf(" => 0x%X (NOT SUPPORTED)\n", stack.Peek().Bytes())

		case TIMESTAMP: // 0x42
			time := vm.params.BlockTime
			stack.Push64(int64(time))
			dbg.Printf(" => 0x%X\n", time)

		case BLOCKHEIGHT: // 0x43
			number := int64(vm.params.BlockHeight)
			stack.Push64(number)
			dbg.Printf(" => 0x%X\n", number)

		case GASLIMIT: // 0x45
			stack.Push64(vm.params.GasLimit)
			dbg.Printf(" => %v\n", vm.params.GasLimit)

		case POP: // 0x50
			popped := stack.Pop()
			dbg.Printf(" => 0x%X\n", popped)

		case MLOAD: // 0x51
			offset := stack.Pop64()
			data, ok := subslice(memory, offset, 32)
			if !ok {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}
			stack.Push(LeftPadWord256(data))
			dbg.Printf(" => 0x%X\n", data)

		case MSTORE: // 0x52
			offset, data := stack.Pop64(), stack.Pop()
			dest, ok := subslice(memory, offset, 32)
			if !ok {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}
			copy(dest, data[:])
			dbg.Printf(" => 0x%X\n", data)

		case MSTORE8: // 0x53
			offset, val := stack.Pop64(), byte(stack.Pop64()&0xFF)
			if len(memory) <= int(offset) {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}
			memory[offset] = val
			dbg.Printf(" => [%v] 0x%X\n", offset, val)

		case SLOAD: // 0x54
			loc := stack.Pop()
			data := vm.appState.GetStorage(callee.Address, loc)
			stack.Push(data)
			dbg.Printf(" {0x%X : 0x%X}\n", loc, data)

		case SSTORE: // 0x55
			loc, data := stack.Pop(), stack.Pop()
			if useGasNegative(gas, GasStorageUpdate, &err) {
				return nil, err
			}
			vm.appState.SetStorage(callee.Address, loc, data)
			dbg.Printf(" {0x%X : 0x%X}\n", loc, data)

		case JUMP: // 0x56
			err = jump(code, stack.Pop64(), &pc)
			continue

		case JUMPI: // 0x57
			pos, cond := stack.Pop64(), stack.Pop()
			if !cond.IsZero() {
				err = jump(code, pos, &pc)
				continue
			}
			dbg.Printf(" ~> false\n")

		case PC: // 0x58
			stack.Push64(pc)

		case MSIZE: // 0x59
			stack.Push64(int64(len(memory)))

		case GAS: // 0x5A
			stack.Push64(*gas)
			dbg.Printf(" => %X\n", *gas)

		case JUMPDEST: // 0x5B
			dbg.Printf("\n")
			// Do nothing

		case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32:
			a := int64(op - PUSH1 + 1)
			codeSegment, ok := subslice(code, pc+1, a)
			if !ok {
				return nil, firstErr(err, ErrCodeOutOfBounds)
			}
			res := LeftPadWord256(codeSegment)
			stack.Push(res)
			pc += a
			dbg.Printf(" => 0x%X\n", res)
			//stack.Print(10)

		case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
			n := int(op - DUP1 + 1)
			stack.Dup(n)
			dbg.Printf(" => [%d] 0x%X\n", n, stack.Peek().Bytes())

		case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
			n := int(op - SWAP1 + 2)
			stack.Swap(n)
			dbg.Printf(" => [%d] %X\n", n, stack.Peek())
			//stack.Print(10)

		case LOG0, LOG1, LOG2, LOG3, LOG4:
			n := int(op - LOG0)
			topics := make([]Word256, n)
			offset, size := stack.Pop64(), stack.Pop64()
			for i := 0; i < n; i++ {
				topics[i] = stack.Pop()
			}
			data, ok := subslice(memory, offset, size)
			if !ok {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}
			data = copyslice(data)
			if vm.evc != nil {
				eventID := types.EventStringLogEvent(callee.Address.Postfix(20))
				fmt.Printf("eventID: %s\n", eventID)
				log := types.EventDataLog{
					callee.Address,
					topics,
					data,
					vm.params.BlockHeight,
				}
				vm.evc.FireEvent(eventID, log)
			}
			dbg.Printf(" => T:%X D:%X\n", topics, data)

		case CREATE: // 0xF0
			if !HasPermission(vm.appState, callee, ptypes.CreateContract) {
				return nil, ErrPermission{"create_contract"}
			}
			contractValue := stack.Pop64()
			offset, size := stack.Pop64(), stack.Pop64()
			input, ok := subslice(memory, offset, size)
			if !ok {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}

			// Check balance
			if callee.Balance < contractValue {
				return nil, firstErr(err, ErrInsufficientBalance)
			}

			// TODO charge for gas to create account _ the code length * GasCreateByte

			newAccount := vm.appState.CreateAccount(callee)
			// Run the input to get the contract code.
			// NOTE: no need to copy 'input' as per Call contract.
			ret, err_ := vm.Call(callee, newAccount, input, input, contractValue, gas)
			if err_ != nil {
				stack.Push(Zero256)
			} else {
				newAccount.Code = ret // Set the code (ret need not be copied as per Call contract)
				stack.Push(newAccount.Address)
			}

		case CALL, CALLCODE: // 0xF1, 0xF2
			if !HasPermission(vm.appState, callee, ptypes.Call) {
				return nil, ErrPermission{"call"}
			}
			gasLimit := stack.Pop64()
			addr, value := stack.Pop(), stack.Pop64()
			inOffset, inSize := stack.Pop64(), stack.Pop64()   // inputs
			retOffset, retSize := stack.Pop64(), stack.Pop64() // outputs
			dbg.Printf(" => %X\n", addr)

			// Get the arguments from the memory
			args, ok := subslice(memory, inOffset, inSize)
			if !ok {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}
			args = copyslice(args)

			// Ensure that gasLimit is reasonable
			if *gas < gasLimit {
				return nil, firstErr(err, ErrInsufficientGas)
			} else {
				*gas -= gasLimit
				// NOTE: we will return any used gas later.
			}

			// Begin execution
			var ret []byte
			var err error
			if nativeContract := registeredNativeContracts[addr]; nativeContract != nil {
				// Native contract
				ret, err = nativeContract(vm.appState, callee, args, &gasLimit)

				// for now we fire the Call event. maybe later we'll fire more particulars
				var exception string
				if err != nil {
					exception = err.Error()
				}
				// NOTE: these fire call events and not particular events for eg name reg or permissions
				vm.fireCallEvent(&exception, &ret, callee, &Account{Address: addr}, args, value, gas)
			} else {
				// EVM contract
				if useGasNegative(gas, GasGetAccount, &err) {
					return nil, err
				}
				acc := vm.appState.GetAccount(addr)
				// since CALL is used also for sending funds,
				// acc may not exist yet. This is an error for
				// CALLCODE, but not for CALL, though I don't think
				// ethereum actually cares
				if op == CALLCODE {
					if acc == nil {
						return nil, firstErr(err, ErrUnknownAddress)
					}
					ret, err = vm.Call(callee, callee, acc.Code, args, value, gas)
				} else {
					if acc == nil {
						// nil account means we're sending funds to a new account
						if !HasPermission(vm.appState, caller, ptypes.CreateAccount) {
							return nil, ErrPermission{"create_account"}
						}
						acc = &Account{Address: addr}
						vm.appState.UpdateAccount(acc)
						// send funds to new account
						ret, err = vm.Call(callee, acc, acc.Code, args, value, gas)
					} else {
						// call standard contract
						ret, err = vm.Call(callee, acc, acc.Code, args, value, gas)
					}
				}
			}

			// Push result
			if err != nil {
				dbg.Printf("error on call: %s\n", err.Error())
				stack.Push(Zero256)
			} else {
				stack.Push(One256)
				dest, ok := subslice(memory, retOffset, retSize)
				if !ok {
					return nil, firstErr(err, ErrMemoryOutOfBounds)
				}
				copy(dest, ret)
			}

			// Handle remaining gas.
			*gas += gasLimit

			dbg.Printf("resume %X (%v)\n", callee.Address, gas)

		case RETURN: // 0xF3
			offset, size := stack.Pop64(), stack.Pop64()
			ret, ok := subslice(memory, offset, size)
			if !ok {
				return nil, firstErr(err, ErrMemoryOutOfBounds)
			}
			dbg.Printf(" => [%v, %v] (%d) 0x%X\n", offset, size, len(ret), ret)
			output = copyslice(ret)
			return output, nil

		case SUICIDE: // 0xFF
			addr := stack.Pop()
			if useGasNegative(gas, GasGetAccount, &err) {
				return nil, err
			}
			// TODO if the receiver is , then make it the fee. (?)
			// TODO: create account if doesn't exist (no reason not to)
			receiver := vm.appState.GetAccount(addr)
			if receiver == nil {
				return nil, firstErr(err, ErrUnknownAddress)
			}
			balance := callee.Balance
			receiver.Balance += balance
			vm.appState.UpdateAccount(receiver)
			vm.appState.RemoveAccount(callee)
			dbg.Printf(" => (%X) %v\n", addr[:4], balance)
			fallthrough

		case STOP: // 0x00
			return nil, nil

		default:
			dbg.Printf("(pc) %-3v Invalid opcode %X\n", pc, op)
			return nil, fmt.Errorf("Invalid opcode %X", op)
		}

		pc++

	}
}
Пример #7
0
func not(z *big.Int, x *big.Int, y *big.Int) *big.Int {
	_ = y
	return z.Not(x)
}
Пример #8
0
func nxor(z *big.Int, x *big.Int, y *big.Int) *big.Int {
	z.Xor(x, y)
	return z.Not(z)
}
Пример #9
0
// Run loops and evaluates the contract's code with the given input data
func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) {
	self.env.SetDepth(self.env.Depth() + 1)
	defer self.env.SetDepth(self.env.Depth() - 1)

	// User defer pattern to check for an error and, based on the error being nil or not, use all gas and return.
	defer func() {
		if err != nil {
			// In case of a VM exception (known exceptions) all gas consumed (panics NOT included).
			context.UseGas(context.Gas)

			ret = context.Return(nil)
		}
	}()

	if context.CodeAddr != nil {
		if p := Precompiled[context.CodeAddr.Str()]; p != nil {
			return self.RunPrecompiled(p, input, context)
		}
	}

	var (
		codehash = crypto.Sha3Hash(context.Code) // codehash is used when doing jump dest caching
		program  *Program
	)
	if EnableJit {
		// Fetch program status.
		// * If ready run using JIT
		// * If unknown, compile in a seperate goroutine
		// * If forced wait for compilation and run once done
		if status := GetProgramStatus(codehash); status == progReady {
			return RunProgram(GetProgram(codehash), self.env, context, input)
		} else if status == progUnknown {
			if ForceJit {
				// Create and compile program
				program = NewProgram(context.Code)
				perr := CompileProgram(program)
				if perr == nil {
					return RunProgram(program, self.env, context, input)
				}
				glog.V(logger.Info).Infoln("error compiling program", err)
			} else {
				// create and compile the program. Compilation
				// is done in a seperate goroutine
				program = NewProgram(context.Code)
				go func() {
					err := CompileProgram(program)
					if err != nil {
						glog.V(logger.Info).Infoln("error compiling program", err)
						return
					}
				}()
			}
		}
	}

	var (
		caller = context.caller
		code   = context.Code
		value  = context.value
		price  = context.Price

		op      OpCode             // current opcode
		mem     = NewMemory()      // bound memory
		stack   = newstack()       // local stack
		statedb = self.env.State() // current state
		// For optimisation reason we're using uint64 as the program counter.
		// It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Pratically much less so feasible.
		pc = uint64(0) // program counter

		// jump evaluates and checks whether the given jump destination is a valid one
		// if valid move the `pc` otherwise return an error.
		jump = func(from uint64, to *big.Int) error {
			if !context.jumpdests.has(codehash, code, to) {
				nop := context.GetOp(to.Uint64())
				return fmt.Errorf("invalid jump destination (%v) %v", nop, to)
			}

			pc = to.Uint64()

			return nil
		}

		newMemSize *big.Int
		cost       *big.Int
	)

	// User defer pattern to check for an error and, based on the error being nil or not, use all gas and return.
	defer func() {
		if err != nil {
			self.log(pc, op, context.Gas, cost, mem, stack, context, err)
		}
	}()

	// Don't bother with the execution if there's no code.
	if len(code) == 0 {
		return context.Return(nil), nil
	}

	for {
		// Overhead of the atomic read might not be worth it
		/* TODO this still causes a few issues in the tests
		if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady {
			// move execution
			glog.V(logger.Info).Infoln("Moved execution to JIT")
			return runProgram(program, pc, mem, stack, self.env, context, input)
		}
		*/
		// The base for all big integer arithmetic
		base := new(big.Int)

		// Get the memory location of pc
		op = context.GetOp(pc)

		// calculate the new memory size and gas price for the current executing opcode
		newMemSize, cost, err = calculateGasAndSize(self.env, context, caller, op, statedb, mem, stack)
		if err != nil {
			return nil, err
		}

		// Use the calculated gas. When insufficient gas is present, use all gas and return an
		// Out Of Gas error
		if !context.UseGas(cost) {
			return nil, OutOfGasError
		}

		// Resize the memory calculated previously
		mem.Resize(newMemSize.Uint64())
		// Add a log message
		self.log(pc, op, context.Gas, cost, mem, stack, context, nil)

		switch op {
		case ADD:
			x, y := stack.pop(), stack.pop()

			base.Add(x, y)

			U256(base)

			// pop result back on the stack
			stack.push(base)
		case SUB:
			x, y := stack.pop(), stack.pop()

			base.Sub(x, y)

			U256(base)

			// pop result back on the stack
			stack.push(base)
		case MUL:
			x, y := stack.pop(), stack.pop()

			base.Mul(x, y)

			U256(base)

			// pop result back on the stack
			stack.push(base)
		case DIV:
			x, y := stack.pop(), stack.pop()

			if y.Cmp(common.Big0) != 0 {
				base.Div(x, y)
			}

			U256(base)

			// pop result back on the stack
			stack.push(base)
		case SDIV:
			x, y := S256(stack.pop()), S256(stack.pop())

			if y.Cmp(common.Big0) == 0 {
				base.Set(common.Big0)
			} else {
				n := new(big.Int)
				if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 {
					n.SetInt64(-1)
				} else {
					n.SetInt64(1)
				}

				base.Div(x.Abs(x), y.Abs(y)).Mul(base, n)

				U256(base)
			}

			stack.push(base)
		case MOD:
			x, y := stack.pop(), stack.pop()

			if y.Cmp(common.Big0) == 0 {
				base.Set(common.Big0)
			} else {
				base.Mod(x, y)
			}

			U256(base)

			stack.push(base)
		case SMOD:
			x, y := S256(stack.pop()), S256(stack.pop())

			if y.Cmp(common.Big0) == 0 {
				base.Set(common.Big0)
			} else {
				n := new(big.Int)
				if x.Cmp(common.Big0) < 0 {
					n.SetInt64(-1)
				} else {
					n.SetInt64(1)
				}

				base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n)

				U256(base)
			}

			stack.push(base)

		case EXP:
			x, y := stack.pop(), stack.pop()

			base.Exp(x, y, Pow256)

			U256(base)

			stack.push(base)
		case SIGNEXTEND:
			back := stack.pop()
			if back.Cmp(big.NewInt(31)) < 0 {
				bit := uint(back.Uint64()*8 + 7)
				num := stack.pop()
				mask := new(big.Int).Lsh(common.Big1, bit)
				mask.Sub(mask, common.Big1)
				if common.BitTest(num, int(bit)) {
					num.Or(num, mask.Not(mask))
				} else {
					num.And(num, mask)
				}

				num = U256(num)

				stack.push(num)
			}
		case NOT:
			stack.push(U256(new(big.Int).Not(stack.pop())))
		case LT:
			x, y := stack.pop(), stack.pop()

			// x < y
			if x.Cmp(y) < 0 {
				stack.push(common.BigTrue)
			} else {
				stack.push(common.BigFalse)
			}
		case GT:
			x, y := stack.pop(), stack.pop()

			// x > y
			if x.Cmp(y) > 0 {
				stack.push(common.BigTrue)
			} else {
				stack.push(common.BigFalse)
			}

		case SLT:
			x, y := S256(stack.pop()), S256(stack.pop())

			// x < y
			if x.Cmp(S256(y)) < 0 {
				stack.push(common.BigTrue)
			} else {
				stack.push(common.BigFalse)
			}
		case SGT:
			x, y := S256(stack.pop()), S256(stack.pop())

			// x > y
			if x.Cmp(y) > 0 {
				stack.push(common.BigTrue)
			} else {
				stack.push(common.BigFalse)
			}

		case EQ:
			x, y := stack.pop(), stack.pop()

			// x == y
			if x.Cmp(y) == 0 {
				stack.push(common.BigTrue)
			} else {
				stack.push(common.BigFalse)
			}
		case ISZERO:
			x := stack.pop()
			if x.Cmp(common.BigFalse) > 0 {
				stack.push(common.BigFalse)
			} else {
				stack.push(common.BigTrue)
			}

		case AND:
			x, y := stack.pop(), stack.pop()

			stack.push(base.And(x, y))
		case OR:
			x, y := stack.pop(), stack.pop()

			stack.push(base.Or(x, y))
		case XOR:
			x, y := stack.pop(), stack.pop()

			stack.push(base.Xor(x, y))
		case BYTE:
			th, val := stack.pop(), stack.pop()

			if th.Cmp(big.NewInt(32)) < 0 {
				byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()]))

				base.Set(byt)
			} else {
				base.Set(common.BigFalse)
			}

			stack.push(base)
		case ADDMOD:
			x := stack.pop()
			y := stack.pop()
			z := stack.pop()

			if z.Cmp(Zero) > 0 {
				add := new(big.Int).Add(x, y)
				base.Mod(add, z)

				base = U256(base)
			}

			stack.push(base)
		case MULMOD:
			x := stack.pop()
			y := stack.pop()
			z := stack.pop()

			if z.Cmp(Zero) > 0 {
				mul := new(big.Int).Mul(x, y)
				base.Mod(mul, z)

				U256(base)
			}

			stack.push(base)

		case SHA3:
			offset, size := stack.pop(), stack.pop()
			data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64()))

			stack.push(common.BigD(data))

		case ADDRESS:
			stack.push(common.Bytes2Big(context.Address().Bytes()))

		case BALANCE:
			addr := common.BigToAddress(stack.pop())
			balance := statedb.GetBalance(addr)

			stack.push(new(big.Int).Set(balance))

		case ORIGIN:
			origin := self.env.Origin()

			stack.push(origin.Big())

		case CALLER:
			caller := context.caller.Address()
			stack.push(common.Bytes2Big(caller.Bytes()))

		case CALLVALUE:
			stack.push(new(big.Int).Set(value))

		case CALLDATALOAD:
			data := getData(input, stack.pop(), common.Big32)

			stack.push(common.Bytes2Big(data))
		case CALLDATASIZE:
			l := int64(len(input))
			stack.push(big.NewInt(l))

		case CALLDATACOPY:
			var (
				mOff = stack.pop()
				cOff = stack.pop()
				l    = stack.pop()
			)
			data := getData(input, cOff, l)

			mem.Set(mOff.Uint64(), l.Uint64(), data)

		case CODESIZE, EXTCODESIZE:
			var code []byte
			if op == EXTCODESIZE {
				addr := common.BigToAddress(stack.pop())

				code = statedb.GetCode(addr)
			} else {
				code = context.Code
			}

			l := big.NewInt(int64(len(code)))
			stack.push(l)

		case CODECOPY, EXTCODECOPY:
			var code []byte
			if op == EXTCODECOPY {
				addr := common.BigToAddress(stack.pop())
				code = statedb.GetCode(addr)
			} else {
				code = context.Code
			}

			var (
				mOff = stack.pop()
				cOff = stack.pop()
				l    = stack.pop()
			)

			codeCopy := getData(code, cOff, l)

			mem.Set(mOff.Uint64(), l.Uint64(), codeCopy)

		case GASPRICE:
			stack.push(new(big.Int).Set(context.Price))

		case BLOCKHASH:
			num := stack.pop()

			n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257)
			if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 {
				stack.push(self.env.GetHash(num.Uint64()).Big())
			} else {
				stack.push(common.Big0)
			}

		case COINBASE:
			coinbase := self.env.Coinbase()

			stack.push(coinbase.Big())

		case TIMESTAMP:
			time := self.env.Time()

			stack.push(new(big.Int).Set(time))

		case NUMBER:
			number := self.env.BlockNumber()

			stack.push(U256(number))

		case DIFFICULTY:
			difficulty := self.env.Difficulty()

			stack.push(new(big.Int).Set(difficulty))

		case GASLIMIT:

			stack.push(new(big.Int).Set(self.env.GasLimit()))

		case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32:
			size := uint64(op - PUSH1 + 1)
			byts := getData(code, new(big.Int).SetUint64(pc+1), new(big.Int).SetUint64(size))
			// push value to stack
			stack.push(common.Bytes2Big(byts))
			pc += size

		case POP:
			stack.pop()
		case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
			n := int(op - DUP1 + 1)
			stack.dup(n)

		case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
			n := int(op - SWAP1 + 2)
			stack.swap(n)

		case LOG0, LOG1, LOG2, LOG3, LOG4:
			n := int(op - LOG0)
			topics := make([]common.Hash, n)
			mStart, mSize := stack.pop(), stack.pop()
			for i := 0; i < n; i++ {
				topics[i] = common.BigToHash(stack.pop())
			}

			data := mem.Get(mStart.Int64(), mSize.Int64())
			log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64())
			self.env.AddLog(log)

		case MLOAD:
			offset := stack.pop()
			val := common.BigD(mem.Get(offset.Int64(), 32))
			stack.push(val)

		case MSTORE:
			// pop value of the stack
			mStart, val := stack.pop(), stack.pop()
			mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256))

		case MSTORE8:
			off, val := stack.pop().Int64(), stack.pop().Int64()

			mem.store[off] = byte(val & 0xff)

		case SLOAD:
			loc := common.BigToHash(stack.pop())
			val := statedb.GetState(context.Address(), loc).Big()
			stack.push(val)

		case SSTORE:
			loc := common.BigToHash(stack.pop())
			val := stack.pop()

			statedb.SetState(context.Address(), loc, common.BigToHash(val))

		case JUMP:
			if err := jump(pc, stack.pop()); err != nil {
				return nil, err
			}

			continue
		case JUMPI:
			pos, cond := stack.pop(), stack.pop()

			if cond.Cmp(common.BigTrue) >= 0 {
				if err := jump(pc, pos); err != nil {
					return nil, err
				}

				continue
			}

		case JUMPDEST:
		case PC:
			stack.push(new(big.Int).SetUint64(pc))
		case MSIZE:
			stack.push(big.NewInt(int64(mem.Len())))
		case GAS:
			stack.push(new(big.Int).Set(context.Gas))
		case CREATE:

			var (
				value        = stack.pop()
				offset, size = stack.pop(), stack.pop()
				input        = mem.Get(offset.Int64(), size.Int64())
				gas          = new(big.Int).Set(context.Gas)
				addr         common.Address
			)

			context.UseGas(context.Gas)
			ret, suberr, ref := self.env.Create(context, input, gas, price, value)
			if suberr != nil {
				stack.push(common.BigFalse)

			} else {
				// gas < len(ret) * CreateDataGas == NO_CODE
				dataGas := big.NewInt(int64(len(ret)))
				dataGas.Mul(dataGas, params.CreateDataGas)
				if context.UseGas(dataGas) {
					ref.SetCode(ret)
				}
				addr = ref.Address()

				stack.push(addr.Big())

			}

		case CALL, CALLCODE:
			gas := stack.pop()
			// pop gas and value of the stack.
			addr, value := stack.pop(), stack.pop()
			value = U256(value)
			// pop input size and offset
			inOffset, inSize := stack.pop(), stack.pop()
			// pop return size and offset
			retOffset, retSize := stack.pop(), stack.pop()

			address := common.BigToAddress(addr)

			// Get the arguments from the memory
			args := mem.Get(inOffset.Int64(), inSize.Int64())

			if len(value.Bytes()) > 0 {
				gas.Add(gas, params.CallStipend)
			}

			var (
				ret []byte
				err error
			)
			if op == CALLCODE {
				ret, err = self.env.CallCode(context, address, args, gas, price, value)
			} else {
				ret, err = self.env.Call(context, address, args, gas, price, value)
			}

			if err != nil {
				stack.push(common.BigFalse)

			} else {
				stack.push(common.BigTrue)

				mem.Set(retOffset.Uint64(), retSize.Uint64(), ret)
			}

		case RETURN:
			offset, size := stack.pop(), stack.pop()
			ret := mem.GetPtr(offset.Int64(), size.Int64())

			return context.Return(ret), nil
		case SUICIDE:
			receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop()))
			balance := statedb.GetBalance(context.Address())

			receiver.AddBalance(balance)

			statedb.Delete(context.Address())

			fallthrough
		case STOP: // Stop the context

			return context.Return(nil), nil
		default:

			return nil, fmt.Errorf("Invalid opcode %x", op)
		}

		pc++

	}
}
Пример #10
0
func (self *Vm) Run(context *Context, callData []byte) (ret []byte, err error) {
	self.env.SetDepth(self.env.Depth() + 1)
	defer self.env.SetDepth(self.env.Depth() - 1)

	var (
		caller = context.caller
		code   = context.Code
		value  = context.value
		price  = context.Price
	)

	self.Printf("(%d) (%x) %x (code=%d) gas: %v (d) %x", self.env.Depth(), caller.Address().Bytes()[:4], context.Address(), len(code), context.Gas, callData).Endl()

	// User defer pattern to check for an error and, based on the error being nil or not, use all gas and return.
	defer func() {
		if self.After != nil {
			self.After(context, err)
		}

		if err != nil {
			self.Printf(" %v", err).Endl()
			// In case of a VM exception (known exceptions) all gas consumed (panics NOT included).
			context.UseGas(context.Gas)

			ret = context.Return(nil)
		}
	}()

	if context.CodeAddr != nil {
		if p := Precompiled[context.CodeAddr.Str()]; p != nil {
			return self.RunPrecompiled(p, callData, context)
		}
	}

	var (
		op OpCode

		destinations = analyseJumpDests(context.Code)
		mem          = NewMemory()
		stack        = newStack()
		pc           = new(big.Int)
		statedb      = self.env.State()

		jump = func(from *big.Int, to *big.Int) error {
			nop := context.GetOp(to)
			if !destinations.Has(to) {
				return fmt.Errorf("invalid jump destination (%v) %v", nop, to)
			}

			self.Printf(" ~> %v", to)
			pc = to

			self.Endl()

			return nil
		}
	)

	// Don't bother with the execution if there's no code.
	if len(code) == 0 {
		return context.Return(nil), nil
	}

	for {
		// The base for all big integer arithmetic
		base := new(big.Int)

		// Get the memory location of pc
		op = context.GetOp(pc)

		self.Printf("(pc) %-3d -o- %-14s (m) %-4d (s) %-4d ", pc, op.String(), mem.Len(), stack.len())
		newMemSize, gas, err := self.calculateGasAndSize(context, caller, op, statedb, mem, stack)
		if err != nil {
			return nil, err
		}

		self.Printf("(g) %-3v (%v)", gas, context.Gas)

		if !context.UseGas(gas) {
			self.Endl()

			tmp := new(big.Int).Set(context.Gas)

			context.UseGas(context.Gas)

			return context.Return(nil), OOG(gas, tmp)
		}

		mem.Resize(newMemSize.Uint64())

		switch op {
		// 0x20 range
		case ADD:
			x, y := stack.pop(), stack.pop()
			self.Printf(" %v + %v", y, x)

			base.Add(x, y)

			U256(base)

			self.Printf(" = %v", base)
			// pop result back on the stack
			stack.push(base)
		case SUB:
			x, y := stack.pop(), stack.pop()
			self.Printf(" %v - %v", y, x)

			base.Sub(x, y)

			U256(base)

			self.Printf(" = %v", base)
			// pop result back on the stack
			stack.push(base)
		case MUL:
			x, y := stack.pop(), stack.pop()
			self.Printf(" %v * %v", y, x)

			base.Mul(x, y)

			U256(base)

			self.Printf(" = %v", base)
			// pop result back on the stack
			stack.push(base)
		case DIV:
			x, y := stack.pop(), stack.pop()
			self.Printf(" %v / %v", x, y)

			if y.Cmp(common.Big0) != 0 {
				base.Div(x, y)
			}

			U256(base)

			self.Printf(" = %v", base)
			// pop result back on the stack
			stack.push(base)
		case SDIV:
			x, y := S256(stack.pop()), S256(stack.pop())

			self.Printf(" %v / %v", x, y)

			if y.Cmp(common.Big0) == 0 {
				base.Set(common.Big0)
			} else {
				n := new(big.Int)
				if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 {
					n.SetInt64(-1)
				} else {
					n.SetInt64(1)
				}

				base.Div(x.Abs(x), y.Abs(y)).Mul(base, n)

				U256(base)
			}

			self.Printf(" = %v", base)
			stack.push(base)
		case MOD:
			x, y := stack.pop(), stack.pop()

			self.Printf(" %v %% %v", x, y)

			if y.Cmp(common.Big0) == 0 {
				base.Set(common.Big0)
			} else {
				base.Mod(x, y)
			}

			U256(base)

			self.Printf(" = %v", base)
			stack.push(base)
		case SMOD:
			x, y := S256(stack.pop()), S256(stack.pop())

			self.Printf(" %v %% %v", x, y)

			if y.Cmp(common.Big0) == 0 {
				base.Set(common.Big0)
			} else {
				n := new(big.Int)
				if x.Cmp(common.Big0) < 0 {
					n.SetInt64(-1)
				} else {
					n.SetInt64(1)
				}

				base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n)

				U256(base)
			}

			self.Printf(" = %v", base)
			stack.push(base)

		case EXP:
			x, y := stack.pop(), stack.pop()

			self.Printf(" %v ** %v", x, y)

			base.Exp(x, y, Pow256)

			U256(base)

			self.Printf(" = %v", base)

			stack.push(base)
		case SIGNEXTEND:
			back := stack.pop()
			if back.Cmp(big.NewInt(31)) < 0 {
				bit := uint(back.Uint64()*8 + 7)
				num := stack.pop()
				mask := new(big.Int).Lsh(common.Big1, bit)
				mask.Sub(mask, common.Big1)
				if common.BitTest(num, int(bit)) {
					num.Or(num, mask.Not(mask))
				} else {
					num.And(num, mask)
				}

				num = U256(num)

				self.Printf(" = %v", num)

				stack.push(num)
			}
		case NOT:
			stack.push(U256(new(big.Int).Not(stack.pop())))
			//base.Sub(Pow256, stack.pop()).Sub(base, common.Big1)
			//base = U256(base)
			//stack.push(base)
		case LT:
			x, y := stack.pop(), stack.pop()
			self.Printf(" %v < %v", x, y)
			// x < y
			if x.Cmp(y) < 0 {
				stack.push(common.BigTrue)
			} else {
				stack.push(common.BigFalse)
			}
		case GT:
			x, y := stack.pop(), stack.pop()
			self.Printf(" %v > %v", x, y)

			// x > y
			if x.Cmp(y) > 0 {
				stack.push(common.BigTrue)
			} else {
				stack.push(common.BigFalse)
			}

		case SLT:
			x, y := S256(stack.pop()), S256(stack.pop())
			self.Printf(" %v < %v", x, y)
			// x < y
			if x.Cmp(S256(y)) < 0 {
				stack.push(common.BigTrue)
			} else {
				stack.push(common.BigFalse)
			}
		case SGT:
			x, y := S256(stack.pop()), S256(stack.pop())
			self.Printf(" %v > %v", x, y)

			// x > y
			if x.Cmp(y) > 0 {
				stack.push(common.BigTrue)
			} else {
				stack.push(common.BigFalse)
			}

		case EQ:
			x, y := stack.pop(), stack.pop()
			self.Printf(" %v == %v", y, x)

			// x == y
			if x.Cmp(y) == 0 {
				stack.push(common.BigTrue)
			} else {
				stack.push(common.BigFalse)
			}
		case ISZERO:
			x := stack.pop()
			if x.Cmp(common.BigFalse) > 0 {
				stack.push(common.BigFalse)
			} else {
				stack.push(common.BigTrue)
			}

			// 0x10 range
		case AND:
			x, y := stack.pop(), stack.pop()
			self.Printf(" %v & %v", y, x)

			stack.push(base.And(x, y))
		case OR:
			x, y := stack.pop(), stack.pop()
			self.Printf(" %v | %v", x, y)

			stack.push(base.Or(x, y))
		case XOR:
			x, y := stack.pop(), stack.pop()
			self.Printf(" %v ^ %v", x, y)

			stack.push(base.Xor(x, y))
		case BYTE:
			th, val := stack.pop(), stack.pop()

			if th.Cmp(big.NewInt(32)) < 0 {
				byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()]))

				base.Set(byt)
			} else {
				base.Set(common.BigFalse)
			}

			self.Printf(" => 0x%x", base.Bytes())

			stack.push(base)
		case ADDMOD:
			x := stack.pop()
			y := stack.pop()
			z := stack.pop()

			if z.Cmp(Zero) > 0 {
				add := new(big.Int).Add(x, y)
				base.Mod(add, z)

				base = U256(base)
			}

			self.Printf(" %v + %v %% %v = %v", x, y, z, base)

			stack.push(base)
		case MULMOD:
			x := stack.pop()
			y := stack.pop()
			z := stack.pop()

			if z.Cmp(Zero) > 0 {
				mul := new(big.Int).Mul(x, y)
				base.Mod(mul, z)

				U256(base)
			}

			self.Printf(" %v + %v %% %v = %v", x, y, z, base)

			stack.push(base)

			// 0x20 range
		case SHA3:
			offset, size := stack.pop(), stack.pop()
			data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64()))

			stack.push(common.BigD(data))

			self.Printf(" => (%v) %x", size, data)
			// 0x30 range
		case ADDRESS:
			stack.push(common.Bytes2Big(context.Address().Bytes()))

			self.Printf(" => %x", context.Address())
		case BALANCE:
			addr := common.BigToAddress(stack.pop())
			balance := statedb.GetBalance(addr)

			stack.push(balance)

			self.Printf(" => %v (%x)", balance, addr)
		case ORIGIN:
			origin := self.env.Origin()

			stack.push(origin.Big())

			self.Printf(" => %x", origin)
		case CALLER:
			caller := context.caller.Address()
			stack.push(common.Bytes2Big(caller.Bytes()))

			self.Printf(" => %x", caller)
		case CALLVALUE:
			stack.push(value)

			self.Printf(" => %v", value)
		case CALLDATALOAD:
			data := getData(callData, stack.pop(), common.Big32)

			self.Printf(" => 0x%x", data)

			stack.push(common.Bytes2Big(data))
		case CALLDATASIZE:
			l := int64(len(callData))
			stack.push(big.NewInt(l))

			self.Printf(" => %d", l)
		case CALLDATACOPY:
			var (
				mOff = stack.pop()
				cOff = stack.pop()
				l    = stack.pop()
			)
			data := getData(callData, cOff, l)

			mem.Set(mOff.Uint64(), l.Uint64(), data)

			self.Printf(" => [%v, %v, %v]", mOff, cOff, l)
		case CODESIZE, EXTCODESIZE:
			var code []byte
			if op == EXTCODESIZE {
				addr := common.BigToAddress(stack.pop())

				code = statedb.GetCode(addr)
			} else {
				code = context.Code
			}

			l := big.NewInt(int64(len(code)))
			stack.push(l)

			self.Printf(" => %d", l)
		case CODECOPY, EXTCODECOPY:
			var code []byte
			if op == EXTCODECOPY {
				addr := common.BigToAddress(stack.pop())
				code = statedb.GetCode(addr)
			} else {
				code = context.Code
			}

			var (
				mOff = stack.pop()
				cOff = stack.pop()
				l    = stack.pop()
			)

			codeCopy := getData(code, cOff, l)

			mem.Set(mOff.Uint64(), l.Uint64(), codeCopy)

			self.Printf(" => [%v, %v, %v] %x", mOff, cOff, l, codeCopy)
		case GASPRICE:
			stack.push(context.Price)

			self.Printf(" => %x", context.Price)

			// 0x40 range
		case BLOCKHASH:
			num := stack.pop()

			n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257)
			if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 {
				stack.push(self.env.GetHash(num.Uint64()).Big())
			} else {
				stack.push(common.Big0)
			}

			self.Printf(" => 0x%x", stack.peek().Bytes())
		case COINBASE:
			coinbase := self.env.Coinbase()

			stack.push(coinbase.Big())

			self.Printf(" => 0x%x", coinbase)
		case TIMESTAMP:
			time := self.env.Time()

			stack.push(big.NewInt(time))

			self.Printf(" => 0x%x", time)
		case NUMBER:
			number := self.env.BlockNumber()

			stack.push(U256(number))

			self.Printf(" => 0x%x", number.Bytes())
		case DIFFICULTY:
			difficulty := self.env.Difficulty()

			stack.push(difficulty)

			self.Printf(" => 0x%x", difficulty.Bytes())
		case GASLIMIT:
			self.Printf(" => %v", self.env.GasLimit())

			stack.push(self.env.GasLimit())

			// 0x50 range
		case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32:
			a := big.NewInt(int64(op - PUSH1 + 1))
			byts := getData(code, new(big.Int).Add(pc, big.NewInt(1)), a)
			// push value to stack
			stack.push(common.Bytes2Big(byts))
			pc.Add(pc, a)

			self.Printf(" => 0x%x", byts)
		case POP:
			stack.pop()
		case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
			n := int(op - DUP1 + 1)
			stack.dup(n)

			self.Printf(" => [%d] 0x%x", n, stack.peek().Bytes())
		case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
			n := int(op - SWAP1 + 2)
			stack.swap(n)

			self.Printf(" => [%d]", n)
		case LOG0, LOG1, LOG2, LOG3, LOG4:
			n := int(op - LOG0)
			topics := make([]common.Hash, n)
			mStart, mSize := stack.pop(), stack.pop()
			for i := 0; i < n; i++ {
				topics[i] = common.BigToHash(stack.pop()) //common.LeftPadBytes(stack.pop().Bytes(), 32)
			}

			data := mem.Get(mStart.Int64(), mSize.Int64())
			log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64())
			//log := &Log{context.Address(), topics, data, self.env.BlockNumber().Uint64()}
			self.env.AddLog(log)

			self.Printf(" => %v", log)
		case MLOAD:
			offset := stack.pop()
			val := common.BigD(mem.Get(offset.Int64(), 32))
			stack.push(val)

			self.Printf(" => 0x%x", val.Bytes())
		case MSTORE: // Store the value at stack top-1 in to memory at location stack top
			// pop value of the stack
			mStart, val := stack.pop(), stack.pop()
			mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256))

			self.Printf(" => 0x%x", val)
		case MSTORE8:
			off, val := stack.pop().Int64(), stack.pop().Int64()

			mem.store[off] = byte(val & 0xff)

			self.Printf(" => [%v] 0x%x", off, mem.store[off])
		case SLOAD:
			loc := common.BigToHash(stack.pop())
			val := common.Bytes2Big(statedb.GetState(context.Address(), loc))
			stack.push(val)

			self.Printf(" {0x%x : 0x%x}", loc, val.Bytes())
		case SSTORE:
			loc := common.BigToHash(stack.pop())
			val := stack.pop()

			statedb.SetState(context.Address(), loc, val)

			self.Printf(" {0x%x : 0x%x}", loc, val.Bytes())
		case JUMP:
			if err := jump(pc, stack.pop()); err != nil {
				return nil, err
			}

			continue
		case JUMPI:
			pos, cond := stack.pop(), stack.pop()

			if cond.Cmp(common.BigTrue) >= 0 {
				if err := jump(pc, pos); err != nil {
					return nil, err
				}

				continue
			}

			self.Printf(" ~> false")

		case JUMPDEST:
		case PC:
			//stack.push(big.NewInt(int64(pc)))
			stack.push(pc)
		case MSIZE:
			stack.push(big.NewInt(int64(mem.Len())))
		case GAS:
			stack.push(context.Gas)

			self.Printf(" => %x", context.Gas)
			// 0x60 range
		case CREATE:

			var (
				value        = stack.pop()
				offset, size = stack.pop(), stack.pop()
				input        = mem.Get(offset.Int64(), size.Int64())
				gas          = new(big.Int).Set(context.Gas)
				addr         common.Address
			)
			self.Endl()

			context.UseGas(context.Gas)
			ret, suberr, ref := self.env.Create(context, input, gas, price, value)
			if suberr != nil {
				stack.push(common.BigFalse)

				self.Printf(" (*) 0x0 %v", suberr)
			} else {
				// gas < len(ret) * CreateDataGas == NO_CODE
				dataGas := big.NewInt(int64(len(ret)))
				dataGas.Mul(dataGas, params.CreateDataGas)
				if context.UseGas(dataGas) {
					ref.SetCode(ret)
				}
				addr = ref.Address()

				stack.push(addr.Big())

			}

		case CALL, CALLCODE:
			gas := stack.pop()
			// pop gas and value of the stack.
			addr, value := stack.pop(), stack.pop()
			value = U256(value)
			// pop input size and offset
			inOffset, inSize := stack.pop(), stack.pop()
			// pop return size and offset
			retOffset, retSize := stack.pop(), stack.pop()

			address := common.BigToAddress(addr)
			self.Printf(" => %x", address).Endl()

			// Get the arguments from the memory
			args := mem.Get(inOffset.Int64(), inSize.Int64())

			if len(value.Bytes()) > 0 {
				gas.Add(gas, params.CallStipend)
			}

			var (
				ret []byte
				err error
			)
			if op == CALLCODE {
				ret, err = self.env.CallCode(context, address, args, gas, price, value)
			} else {
				ret, err = self.env.Call(context, address, args, gas, price, value)
			}

			if err != nil {
				stack.push(common.BigFalse)

				self.Printf("%v").Endl()
			} else {
				stack.push(common.BigTrue)

				mem.Set(retOffset.Uint64(), retSize.Uint64(), ret)
			}
			self.Printf("resume %x (%v)", context.Address(), context.Gas)
		case RETURN:
			offset, size := stack.pop(), stack.pop()
			ret := mem.Get(offset.Int64(), size.Int64())

			self.Printf(" => [%v, %v] (%d) 0x%x", offset, size, len(ret), ret).Endl()

			return context.Return(ret), nil
		case SUICIDE:
			receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop()))
			balance := statedb.GetBalance(context.Address())

			self.Printf(" => (%x) %v", receiver.Address().Bytes()[:4], balance)

			receiver.AddBalance(balance)

			statedb.Delete(context.Address())

			fallthrough
		case STOP: // Stop the context
			self.Endl()

			return context.Return(nil), nil
		default:
			self.Printf("(pc) %-3v Invalid opcode %x\n", pc, op).Endl()

			return nil, fmt.Errorf("Invalid opcode %x", op)
		}

		pc.Add(pc, One)

		self.Endl()
	}
}
Пример #11
0
// Post-order traversal, equivalent to postfix notation.
func Eval(node interface{}) (*big.Int, error) {
	switch nn := node.(type) {
	case *ast.BinaryExpr:
		z := new(big.Int)
		x, xerr := Eval(nn.X)
		if xerr != nil {
			return nil, xerr
		}
		y, yerr := Eval(nn.Y)
		if yerr != nil {
			return nil, yerr
		}
		switch nn.Op {
		case token.ADD:
			return z.Add(x, y), nil
		case token.SUB:
			return z.Sub(x, y), nil
		case token.MUL:
			return z.Mul(x, y), nil
		case token.QUO:
			if y.Sign() == 0 { // 0 denominator
				return nil, DivideByZero
			}
			return z.Quo(x, y), nil
		case token.REM:
			if y.Sign() == 0 {
				return nil, DivideByZero
			}
			return z.Rem(x, y), nil
		case token.AND:
			return z.And(x, y), nil
		case token.OR:
			return z.Or(x, y), nil
		case token.XOR:
			return z.Xor(x, y), nil
		case token.SHL:
			if y.Sign() < 0 { // negative shift
				return nil, NegativeShift
			}
			return z.Lsh(x, uint(y.Int64())), nil
		case token.SHR:
			if y.Sign() < 0 {
				return nil, NegativeShift
			}
			return z.Rsh(x, uint(y.Int64())), nil
		case token.AND_NOT:
			return z.AndNot(x, y), nil
		default:
			return nil, UnknownOpErr
		}
	case *ast.UnaryExpr:
		var z *big.Int
		var err error
		if z, err = Eval(nn.X); err != nil {
			return nil, err
		}
		switch nn.Op {
		case token.SUB: // -x
			return z.Neg(z), nil
		case token.XOR: // ^x
			return z.Not(z), nil
		case token.ADD: // +x (useless)
			return z, nil
		}
	case *ast.BasicLit:
		z := new(big.Int)
		switch nn.Kind {
		case token.INT:
			z.SetString(nn.Value, 0)
			return z, nil
		default:
			return nil, UnknownLitErr
		}
	case *ast.ParenExpr:
		z, err := Eval(nn.X)
		if err != nil {
			return nil, err
		}
		return z, nil
	case *ast.CallExpr:
		ident, ok := nn.Fun.(*ast.Ident)
		if !ok {
			return nil, UnknownTokenErr // quarter to four am; dunno correct error
		}
		var f Func
		f, ok = FuncMap[ident.Name]
		if !ok {
			return nil, UnknownFuncErr
		}
		var aerr error
		args := make([]*big.Int, len(nn.Args))
		for i, a := range nn.Args {
			if args[i], aerr = Eval(a); aerr != nil {
				return nil, aerr
			}
		}
		x, xerr := f(args...)
		if xerr != nil {
			return nil, xerr
		}
		return x, nil
	}
	return nil, UnknownTokenErr
}