Пример #1
0
// FromIP converts a net.IP type to a Multiaddr.
func FromIP(ip net.IP) (ma.Multiaddr, error) {
	switch {
	case ip.To4() != nil:
		return ma.NewMultiaddr("/ip4/" + ip.String())
	case ip.To16() != nil:
		return ma.NewMultiaddr("/ip6/" + ip.String())
	default:
		return nil, errIncorrectNetAddr
	}
}
Пример #2
0
func TestThinWaist(t *testing.T) {
	addrs := map[string]bool{
		"/ip4/127.0.0.1/udp/1234":              true,
		"/ip4/127.0.0.1/tcp/1234":              true,
		"/ip4/127.0.0.1/udp/1234/utp":          true,
		"/ip4/127.0.0.1/udp/1234/tcp/1234":     true,
		"/ip4/127.0.0.1/tcp/12345/ip4/1.2.3.4": true,
		"/ip6/::1/tcp/80":                      true,
		"/ip6/::1/udp/80":                      true,
		"/ip6/::1":                             true,
		"/ip6/::1/utp":                         false,
		"/tcp/1234/ip4/1.2.3.4":                false,
		"/tcp/1234":                            false,
		"/tcp/1234/utp":                        false,
		"/tcp/1234/udp/1234":                   false,
		"/ip4/1.2.3.4/ip4/2.3.4.5":             true,
		"/ip6/::1/ip4/2.3.4.5":                 true,
	}

	for a, res := range addrs {
		m, err := ma.NewMultiaddr(a)
		if err != nil {
			t.Fatalf("failed to construct Multiaddr: %s", a)
		}

		if IsThinWaist(m) != res {
			t.Fatalf("IsThinWaist(%s) != %v", a, res)
		}
	}
}
Пример #3
0
func newAddrOrFatal(t *testing.T, s string) ma.Multiaddr {
	a, err := ma.NewMultiaddr(s)
	if err != nil {
		t.Fatal("error parsing multiaddr", err)
	}
	return a
}
Пример #4
0
func MA(t *testing.T, m string) ma.Multiaddr {
	maddr, err := ma.NewMultiaddr(m)
	if err != nil {
		t.Fatal(err)
	}
	return maddr
}
Пример #5
0
func newMultiaddr(t *testing.T, m string) ma.Multiaddr {
	maddr, err := ma.NewMultiaddr(m)
	if err != nil {
		t.Fatal("failed to construct multiaddr:", m, err)
	}
	return maddr
}
Пример #6
0
func TestDialArgs(t *testing.T) {
	test := func(e_maddr, e_nw, e_host string) {
		m, err := ma.NewMultiaddr(e_maddr)
		if err != nil {
			t.Fatal("failed to construct", "/ip4/127.0.0.1/udp/1234", e_maddr)
		}

		nw, host, err := DialArgs(m)
		if err != nil {
			t.Fatal("failed to get dial args", e_maddr, m, err)
		}

		if nw != e_nw {
			t.Error("failed to get udp network Dial Arg", e_nw, nw)
		}

		if host != e_host {
			t.Error("failed to get host:port Dial Arg", e_host, host)
		}
	}

	test("/ip4/127.0.0.1/udp/1234", "udp4", "127.0.0.1:1234")
	test("/ip4/127.0.0.1/tcp/4321", "tcp4", "127.0.0.1:4321")
	test("/ip4/127.0.0.1/udp/1234/utp", "utp4", "127.0.0.1:1234")
	test("/ip6/::1/udp/1234", "udp6", "[::1]:1234")
	test("/ip6/::1/tcp/4321", "tcp6", "[::1]:4321")
	test("/ip6/::1/udp/1234/utp", "utp6", "[::1]:1234")
}
Пример #7
0
func TestDialBadAddrs(t *testing.T) {

	m := func(s string) ma.Multiaddr {
		maddr, err := ma.NewMultiaddr(s)
		if err != nil {
			t.Fatal(err)
		}
		return maddr
	}

	ctx := context.Background()
	s := makeSwarms(ctx, t, 1)[0]

	test := func(a ma.Multiaddr) {
		p := testutil.RandPeerIDFatal(t)
		s.peers.AddAddr(p, a, peer.PermanentAddrTTL)
		if _, err := s.Dial(ctx, p); err == nil {
			t.Error("swarm should not dial: %s", m)
		}
	}

	test(m("/ip6/fe80::1"))                // link local
	test(m("/ip6/fe80::100"))              // link local
	test(m("/ip4/127.0.0.1/udp/1234/utp")) // utp
}
Пример #8
0
func newMultiaddr(t *testing.T, s string) ma.Multiaddr {
	maddr, err := ma.NewMultiaddr(s)
	if err != nil {
		t.Fatal(err)
	}
	return maddr
}
Пример #9
0
func mkAddr(t *testing.T, s string) ma.Multiaddr {
	a, err := ma.NewMultiaddr(s)
	if err != nil {
		t.Fatal(err)
	}

	return a
}
Пример #10
0
func address(addr string) ma.Multiaddr {
	m, err := ma.NewMultiaddr(addr)
	if err != nil {
		die(err)
	}

	return m
}
Пример #11
0
func init() {
	// initialize ZeroLocalTCPAddress
	maddr, err := ma.NewMultiaddr("/ip4/127.0.0.1/tcp/0")
	if err != nil {
		panic(err)
	}
	ZeroLocalTCPAddress = maddr
}
Пример #12
0
// RandLocalTCPAddress returns a random multiaddr. it suppresses errors
// for nice composability-- do check the address isn't nil.
//
// Note: for real network tests, use ZeroLocalTCPAddress so the kernel
// assigns an unused TCP port. otherwise you may get clashes. This
// function remains here so that p2p/net/mock (which does not touch the
// real network) can assign different addresses to peers.
func RandLocalTCPAddress() ma.Multiaddr {

	// chances are it will work out, but it **might** fail if the port is in use
	// most ports above 10000 aren't in use by long running processes, so yay.
	// (maybe there should be a range of "loopback" ports that are guaranteed
	// to be open for the process, but naturally can only talk to self.)

	lastPort.Lock()
	if lastPort.port == 0 {
		lastPort.port = 10000 + SeededRand.Intn(50000)
	}
	port := lastPort.port
	lastPort.port++
	lastPort.Unlock()

	addr := fmt.Sprintf("/ip4/127.0.0.1/tcp/%d", port)
	maddr, _ := ma.NewMultiaddr(addr)
	return maddr
}
Пример #13
0
func testToNetAddr(t *testing.T, maddr, ntwk, addr string) {
	m, err := ma.NewMultiaddr(maddr)
	if err != nil {
		t.Fatal("failed to generate.")
	}

	naddr, err := ToNetAddr(m)
	if addr == "" { // should fail
		if err == nil {
			t.Fatalf("failed to error: %s", m)
		}
		return
	}

	// shouldn't fail
	if err != nil {
		t.Fatalf("failed to convert to net addr: %s", m)
	}

	if naddr.String() != addr {
		t.Fatalf("naddr.Address() == %s != %s", naddr, addr)
	}

	if naddr.Network() != ntwk {
		t.Fatalf("naddr.Network() == %s != %s", naddr.Network(), ntwk)
	}

	// should convert properly
	switch ntwk {
	case "tcp":
		_ = naddr.(*net.TCPAddr)
	case "udp":
		_ = naddr.(*net.UDPAddr)
	case "ip":
		_ = naddr.(*net.IPAddr)
	}
}
Пример #14
0
func (m *mapping) ExternalAddr() (ma.Multiaddr, error) {
	if time.Now().Sub(m.cacheTime) < CacheTime {
		return m.cached, nil
	}

	if m.ExternalPort() == 0 { // dont even try right now.
		return nil, ErrNoMapping
	}

	ip, err := m.nat.nat.GetExternalAddress()
	if err != nil {
		return nil, err
	}

	ipmaddr, err := manet.FromIP(ip)
	if err != nil {
		return nil, fmt.Errorf("error parsing ip")
	}

	// call m.ExternalPort again, as mapping may have changed under our feet. (tocttou)
	extport := m.ExternalPort()
	if extport == 0 {
		return nil, ErrNoMapping
	}

	tcp, err := ma.NewMultiaddr(fmt.Sprintf("/%s/%d", m.Protocol(), extport))
	if err != nil {
		return nil, err
	}

	maddr2 := ipmaddr.Encapsulate(tcp)

	m.cached = maddr2
	m.cacheTime = time.Now()
	return maddr2, nil
}
Пример #15
0
func TestFilterAddrs(t *testing.T) {

	m := func(s string) ma.Multiaddr {
		maddr, err := ma.NewMultiaddr(s)
		if err != nil {
			t.Fatal(err)
		}
		return maddr
	}

	bad := []ma.Multiaddr{
		m("/ip4/1.2.3.4/udp/1234"),           // unreliable
		m("/ip4/1.2.3.4/udp/1234/sctp/1234"), // not in manet
		m("/ip4/1.2.3.4/udp/1234/utp"),       // utp is broken
		m("/ip4/1.2.3.4/udp/1234/udt"),       // udt is broken on arm
		m("/ip6/fe80::1/tcp/0"),              // link local
		m("/ip6/fe80::100/tcp/1234"),         // link local
	}

	good := []ma.Multiaddr{
		m("/ip4/127.0.0.1/tcp/0"),
		m("/ip6/::1/tcp/0"),
	}

	goodAndBad := append(good, bad...)

	// test filters

	for _, a := range bad {
		if addrutil.AddrUsable(a, true) {
			t.Errorf("addr %s should be unusable", a)
		}
	}

	for _, a := range good {
		if !addrutil.AddrUsable(a, true) {
			t.Errorf("addr %s should be usable", a)
		}
	}

	subtestAddrsEqual(t, addrutil.FilterUsableAddrs(bad), []ma.Multiaddr{})
	subtestAddrsEqual(t, addrutil.FilterUsableAddrs(good), good)
	subtestAddrsEqual(t, addrutil.FilterUsableAddrs(goodAndBad), good)

	// now test it with swarm

	id, err := testutil.RandPeerID()
	if err != nil {
		t.Fatal(err)
	}

	ps := peer.NewPeerstore()
	ctx := context.Background()

	if _, err := NewNetwork(ctx, bad, id, ps, metrics.NewBandwidthCounter()); err == nil {
		t.Fatal("should have failed to create swarm")
	}

	if _, err := NewNetwork(ctx, goodAndBad, id, ps, metrics.NewBandwidthCounter()); err != nil {
		t.Fatal("should have succeeded in creating swarm", err)
	}
}
Пример #16
0
// TestObsAddrSet
func TestObsAddrSet(t *testing.T) {
	m := func(s string) ma.Multiaddr {
		m, err := ma.NewMultiaddr(s)
		if err != nil {
			t.Error(err)
		}
		return m
	}

	addrsMarch := func(a, b []ma.Multiaddr) bool {
		for _, aa := range a {
			found := false
			for _, bb := range b {
				if aa.Equal(bb) {
					found = true
					break
				}
			}
			if !found {
				return false
			}
		}
		return true
	}

	a1 := m("/ip4/1.2.3.4/tcp/1231")
	a2 := m("/ip4/1.2.3.4/tcp/1232")
	a3 := m("/ip4/1.2.3.4/tcp/1233")
	a4 := m("/ip4/1.2.3.4/tcp/1234")
	a5 := m("/ip4/1.2.3.4/tcp/1235")
	a6 := m("/ip4/1.2.3.6/tcp/1236")
	a7 := m("/ip4/1.2.3.7/tcp/1237")

	oas := ObservedAddrSet{}

	if !addrsMarch(oas.Addrs(), nil) {
		t.Error("addrs should be empty")
	}

	oas.Add(a1, a4)
	oas.Add(a2, a4)
	oas.Add(a3, a4)

	// these are all different so we should not yet get them.
	if !addrsMarch(oas.Addrs(), nil) {
		t.Error("addrs should _still_ be empty (once)")
	}

	// same observer, so should not yet get them.
	oas.Add(a1, a4)
	oas.Add(a2, a4)
	oas.Add(a3, a4)
	if !addrsMarch(oas.Addrs(), nil) {
		t.Error("addrs should _still_ be empty (same obs)")
	}

	// different observer, but same observer group.
	oas.Add(a1, a5)
	oas.Add(a2, a5)
	oas.Add(a3, a5)
	if !addrsMarch(oas.Addrs(), nil) {
		t.Error("addrs should _still_ be empty (same obs group)")
	}

	oas.Add(a1, a6)
	if !addrsMarch(oas.Addrs(), []ma.Multiaddr{a1}) {
		t.Error("addrs should only have a1")
	}

	oas.Add(a2, a5)
	oas.Add(a1, a5)
	oas.Add(a1, a5)
	oas.Add(a2, a6)
	oas.Add(a1, a6)
	oas.Add(a1, a6)
	oas.Add(a2, a7)
	oas.Add(a1, a7)
	oas.Add(a1, a7)
	if !addrsMarch(oas.Addrs(), []ma.Multiaddr{a1, a2}) {
		t.Error("addrs should only have a1, a2")
	}

	// change the timeout constant so we can time it out.
	oas.SetTTL(time.Millisecond * 200)
	<-time.After(time.Millisecond * 210)
	if !addrsMarch(oas.Addrs(), []ma.Multiaddr{nil}) {
		t.Error("addrs should have timed out")
	}
}
Пример #17
0
// FromNetAddr converts a net.Addr type to a Multiaddr.
func FromNetAddr(a net.Addr) (ma.Multiaddr, error) {
	if a == nil {
		return nil, fmt.Errorf("nil multiaddr")
	}

	switch a.Network() {
	case "tcp", "tcp4", "tcp6":
		ac, ok := a.(*net.TCPAddr)
		if !ok {
			return nil, errIncorrectNetAddr
		}

		// Get IP Addr
		ipm, err := FromIP(ac.IP)
		if err != nil {
			return nil, errIncorrectNetAddr
		}

		// Get TCP Addr
		tcpm, err := ma.NewMultiaddr(fmt.Sprintf("/tcp/%d", ac.Port))
		if err != nil {
			return nil, errIncorrectNetAddr
		}

		// Encapsulate
		return ipm.Encapsulate(tcpm), nil

	case "udp", "upd4", "udp6":
		ac, ok := a.(*net.UDPAddr)
		if !ok {
			return nil, errIncorrectNetAddr
		}

		// Get IP Addr
		ipm, err := FromIP(ac.IP)
		if err != nil {
			return nil, errIncorrectNetAddr
		}

		// Get UDP Addr
		udpm, err := ma.NewMultiaddr(fmt.Sprintf("/udp/%d", ac.Port))
		if err != nil {
			return nil, errIncorrectNetAddr
		}

		// Encapsulate
		return ipm.Encapsulate(udpm), nil

	case "utp", "utp4", "utp6":
		acc, ok := a.(*utp.Addr)
		if !ok {
			return nil, errIncorrectNetAddr
		}

		// Get UDP Addr
		ac, ok := acc.Child().(*net.UDPAddr)
		if !ok {
			return nil, errIncorrectNetAddr
		}

		// Get IP Addr
		ipm, err := FromIP(ac.IP)
		if err != nil {
			return nil, errIncorrectNetAddr
		}

		// Get UDP Addr
		utpm, err := ma.NewMultiaddr(fmt.Sprintf("/udp/%d/utp", ac.Port))
		if err != nil {
			return nil, errIncorrectNetAddr
		}

		// Encapsulate
		return ipm.Encapsulate(utpm), nil

	case "ip", "ip4", "ip6":
		ac, ok := a.(*net.IPAddr)
		if !ok {
			return nil, errIncorrectNetAddr
		}
		return FromIP(ac.IP)

	case "ip+net":
		ac, ok := a.(*net.IPNet)
		if !ok {
			return nil, errIncorrectNetAddr
		}
		return FromIP(ac.IP)

	default:
		return nil, fmt.Errorf("unknown network %v", a.Network())
	}
}