// ident generates code for an identifier by loading it into the accumulator. func (c *compiler) ident(e *ast.Ident, lv *arch.LV, tv types.TypeAndValue) *node { lv.Ident = true lv.Type = tv.Type.Underlying() lv.Name = e.Name _, isFunc := tv.Type.(*types.Signature) if isFunc { if x, ok := c.Uses[e]; ok { switch x := x.(type) { case *types.Func: lv.Storage = x.Storage() return newNode(opAddr, lv, nil, nil, nil) case *types.Fwrd: return newNode(opAddr, lv, nil, nil, nil) } } } v, found := c.variable(e, c.Uses) if !found { lv.Ident = false return nil } s, found := c.symbol(v) if !found { lv.Ident = false return nil } _, isRecord := lv.Type.(*types.Record) // arrays decay to pointers, so we need to get the original type // because the type and value by the typechecker is recorded as a pointer array, isArray := v.Type().(*types.Array) lv.Addr = s.Addr lv.Value = s.Value lv.Storage = v.Storage() switch { // constants case tv.Value != nil: lv.Value = tv.Value return newNode(opLit, lv, nil, nil, nil) case isArray: lv.Type = types.NewPointer(array.Elem(), nil) return newNode(opAddr, lv, nil, nil, nil) case isRecord: lv.Ident = false return newNode(opAddr, lv, nil, nil, nil) // variable that a integer or a pointer default: lv.Addressable = true return newNode(opIdent, lv, nil, nil, nil) } }
// reduce transforms expressions into equivalent but faster expressions. func (c *compiler) reduce(n *node) *node { var vl, vr int var lv arch.LV op := n.op cl := n.left.op == opLit cr := n.right.op == opLit if cl { vl, _ = strconv.Atoi(n.left.lv[0].Value.String()) } if cr { vr, _ = strconv.Atoi(n.right.lv[0].Value.String()) } switch { case (op == opPlus || op == opAdd) && cr && vr == 0: // x+0 -> x return n.left case (op == opPlus || op == opAdd) && cl && vl == 0: // 0+x -> x return n.right case op == opSub && cr && vr == 0: // x-0 -> x return n.left case op == opSub && cl && vl == 0: // 0-x -> -x return newNode(opNeg, nil, nil, n.right, nil) case op == opMul && ((cl && vl == 0) || (cr && vr == 0)): // 0*x -> 0 || x*0 -> 0 lv.Value = constant.MakeInt64(0) return newNode(opLit, &lv, nil, nil, nil) case op == opMul || op == opDiv: // reduce x*(2^n) or x/(2^n) to x<<n or x>>n lim := c.cg.Int()*8 - 1 for i, k := 0, 1; i < lim; i, k = i+1, k<<1 { lv.Value = constant.MakeInt64(int64(i)) m := newNode(opLit, &lv, nil, nil, nil) if cr && k == vr { if op == opMul { return newNode(opLsh, nil, nil, n.left, m) } else { return newNode(opRsh, nil, nil, n.left, m) } } else if cl && k == vl && op == opMul { return newNode(opLsh, nil, nil, n.right, m) } } } return n }
// sizeofExpr generates code for a sizeof(x) expression. func (c *compiler) sizeofExpr(e *ast.SizeofExpr, lv *arch.LV, tv types.TypeAndValue) *node { lv.Value = tv.Value lv.Addressable = false n := newNode(opLit, lv, nil, nil, nil) return n }
// selectorExpr generates code for record accesses (a.x, a->x, etc) func (c *compiler) selectorExpr(e *ast.SelectorExpr, lv *arch.LV) *node { sel, found := c.Selections[e] if !found { c.errorf(e.Op.Pos, "no selection expression information found") return nil } n := c.exprInternal(e.X, lv) if sel.Indirect() { n = c.rvalue(n, lv) lv.Ident = false } lv.Addressable = true if !sel.IsUnion() && sel.Offset() != 0 { lv.Value = constant.MakeInt64(sel.Offset()) m := newNode(opLit, lv, nil, nil, nil) n = newNode(opAdd, lv, nil, n, m) } if isArray(sel.Obj().Type()) { lv.Addressable = false } lv.Type = sel.Type().Underlying() return n }
// fold1 folds constant unary expressions. func (c *compiler) fold1(n *node) *node { var lv arch.LV switch n.op { case opScale: v, _ := strconv.Atoi(n.left.lv[0].Value.String()) lv.Value = constant.MakeInt64(int64(v * c.cg.Int())) default: return n } return newNode(opLit, &lv, nil, nil, nil) }
// exprInternal is the main function for generating code by figuring // out what kind of expression it is. func (c *compiler) exprInternal(e ast.Expr, lv *arch.LV) *node { lv.Ident = false pos := e.Span().Start tv, found := c.typAndValue(e) if !found { return nil } // for constants we can just get the value right away if tv.Value != nil { lv.Type = tv.Type lv.Value = tv.Value switch tv.Type { case types.Typ[types.UntypedString]: str, err := strconv.Unquote(tv.Value.String()) if err != nil { c.errorf(pos, "invalid constant %v: %v", tv.Value, err) } c.cg.Data() lab := c.cg.Label() c.cg.Lab(lab) c.cg.Defs(str) c.cg.Defb(0) c.cg.Align(len(str)+1, c.cg.Int()) lv.Addr = lab return newNode(opLdlab, lv, nil, nil, nil) default: return newNode(opLit, lv, nil, nil, nil) } } switch e := e.(type) { case *ast.BinaryExpr: return c.binaryExpr(e, lv) case *ast.UnaryExpr: return c.unaryExpr(e, lv) case *ast.SizeofExpr: return c.sizeofExpr(e, lv, tv) case *ast.StarExpr: return c.starExpr(e, lv) case *ast.CallExpr: return c.callExpr(e, lv) case *ast.Ident: return c.ident(e, lv, tv) case *ast.ParenExpr: return c.exprInternal(e.X, lv) case *ast.IndexExpr: return c.indexExpr(e, lv) case *ast.SelectorExpr: return c.selectorExpr(e, lv) case *ast.CondExpr: return c.condExpr(e, lv) case *ast.CastExpr: return c.castExpr(e, lv, tv) case *ast.BasicType: lv.Type = tv.Type default: c.errorf(pos, "invalid expression: %T", e) } return nil }