// operand parses a general operand and stores the result in *a. func (p *Parser) operand(a *obj.Addr) bool { //fmt.Printf("Operand: %v\n", p.input) if len(p.input) == 0 { p.errorf("empty operand: cannot happen") return false } // General address (with a few exceptions) looks like // $sym±offset(SB)(reg)(index*scale) // Exceptions are: // // R1 // offset // $offset // Every piece is optional, so we scan left to right and what // we discover tells us where we are. // Prefix: $. var prefix rune switch tok := p.peek(); tok { case '$', '*': prefix = rune(tok) p.next() } // Symbol: sym±offset(SB) tok := p.next() name := tok.String() if tok.ScanToken == scanner.Ident && !p.atStartOfRegister(name) { // We have a symbol. Parse $sym±offset(symkind) p.symbolReference(a, name, prefix) // fmt.Printf("SYM %s\n", obj.Dconv(&emptyProg, 0, a)) if p.peek() == scanner.EOF { return true } } // Special register list syntax for arm: [R1,R3-R7] if tok.ScanToken == '[' { if prefix != 0 { p.errorf("illegal use of register list") } p.registerList(a) p.expect(scanner.EOF) return true } // Register: R1 if tok.ScanToken == scanner.Ident && p.atStartOfRegister(name) { if p.atRegisterShift() { // ARM shifted register such as R1<<R2 or R1>>2. a.Type = obj.TYPE_SHIFT a.Offset = p.registerShift(tok.String(), prefix) if p.peek() == '(' { // Can only be a literal register here. p.next() tok := p.next() name := tok.String() if !p.atStartOfRegister(name) { p.errorf("expected register; found %s", name) } a.Reg, _ = p.registerReference(name) p.get(')') } } else if r1, r2, scale, ok := p.register(tok.String(), prefix); ok { if scale != 0 { p.errorf("expected simple register reference") } a.Type = obj.TYPE_REG a.Reg = r1 if r2 != 0 { // Form is R1:R2. It is on RHS and the second register // needs to go into the LHS. panic("cannot happen (Addr.Reg2)") } } // fmt.Printf("REG %s\n", obj.Dconv(&emptyProg, 0, a)) p.expect(scanner.EOF) return true } // Constant. haveConstant := false switch tok.ScanToken { case scanner.Int, scanner.Float, scanner.String, scanner.Char, '+', '-', '~': haveConstant = true case '(': // Could be parenthesized expression or (R). Must be something, though. tok := p.next() if tok.ScanToken == scanner.EOF { p.errorf("missing right parenthesis") return false } rname := tok.String() p.back() haveConstant = !p.atStartOfRegister(rname) if !haveConstant { p.back() // Put back the '('. } } if haveConstant { p.back() if p.have(scanner.Float) { if prefix != '$' { p.errorf("floating-point constant must be an immediate") } a.Type = obj.TYPE_FCONST a.Val = p.floatExpr() // fmt.Printf("FCONST %s\n", obj.Dconv(&emptyProg, 0, a)) p.expect(scanner.EOF) return true } if p.have(scanner.String) { if prefix != '$' { p.errorf("string constant must be an immediate") return false } str, err := strconv.Unquote(p.get(scanner.String).String()) if err != nil { p.errorf("string parse error: %s", err) } a.Type = obj.TYPE_SCONST a.Val = str // fmt.Printf("SCONST %s\n", obj.Dconv(&emptyProg, 0, a)) p.expect(scanner.EOF) return true } a.Offset = int64(p.expr()) if p.peek() != '(' { switch prefix { case '$': a.Type = obj.TYPE_CONST case '*': a.Type = obj.TYPE_INDIR // Can appear but is illegal, will be rejected by the linker. default: a.Type = obj.TYPE_MEM } // fmt.Printf("CONST %d %s\n", a.Offset, obj.Dconv(&emptyProg, 0, a)) p.expect(scanner.EOF) return true } // fmt.Printf("offset %d \n", a.Offset) } // Register indirection: (reg) or (index*scale). We are on the opening paren. p.registerIndirect(a, prefix) // fmt.Printf("DONE %s\n", p.arch.Dconv(&emptyProg, 0, a)) p.expect(scanner.EOF) return true }
// Naddr rewrites a to refer to n. // It assumes that a is zeroed on entry. func Naddr(a *obj.Addr, n *Node) { if n == nil { return } if n.Type != nil && n.Type.Etype != TIDEAL { // TODO(rsc): This is undone by the selective clearing of width below, // to match architectures that were not as aggressive in setting width // during naddr. Those widths must be cleared to avoid triggering // failures in gins when it detects real but heretofore latent (and one // hopes innocuous) type mismatches. // The type mismatches should be fixed and the clearing below removed. dowidth(n.Type) a.Width = n.Type.Width } switch n.Op { default: a := a // copy to let escape into Ctxt.Dconv Debug['h'] = 1 Dump("naddr", n) Fatalf("naddr: bad %v %v", Oconv(int(n.Op), 0), Ctxt.Dconv(a)) case OREGISTER: a.Type = obj.TYPE_REG a.Reg = n.Reg a.Sym = nil if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width. a.Width = 0 } case OINDREG: a.Type = obj.TYPE_MEM a.Reg = n.Reg a.Sym = Linksym(n.Sym) a.Offset = n.Xoffset if a.Offset != int64(int32(a.Offset)) { Yyerror("offset %d too large for OINDREG", a.Offset) } if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width. a.Width = 0 } // n->left is PHEAP ONAME for stack parameter. // compute address of actual parameter on stack. case OPARAM: a.Etype = uint8(Simtype[n.Left.Type.Etype]) a.Width = n.Left.Type.Width a.Offset = n.Xoffset a.Sym = Linksym(n.Left.Sym) a.Type = obj.TYPE_MEM a.Name = obj.NAME_PARAM a.Node = n.Left.Orig case OCLOSUREVAR: if !Curfn.Func.Needctxt { Fatalf("closurevar without needctxt") } a.Type = obj.TYPE_MEM a.Reg = int16(Thearch.REGCTXT) a.Sym = nil a.Offset = n.Xoffset case OCFUNC: Naddr(a, n.Left) a.Sym = Linksym(n.Left.Sym) case ONAME: a.Etype = 0 if n.Type != nil { a.Etype = uint8(Simtype[n.Type.Etype]) } a.Offset = n.Xoffset s := n.Sym a.Node = n.Orig //if(a->node >= (Node*)&n) // fatal("stack node"); if s == nil { s = Lookup(".noname") } if n.Name.Method { if n.Type != nil { if n.Type.Sym != nil { if n.Type.Sym.Pkg != nil { s = Pkglookup(s.Name, n.Type.Sym.Pkg) } } } } a.Type = obj.TYPE_MEM switch n.Class { default: Fatalf("naddr: ONAME class %v %d\n", n.Sym, n.Class) case PEXTERN: a.Name = obj.NAME_EXTERN case PAUTO: a.Name = obj.NAME_AUTO case PPARAM, PPARAMOUT: a.Name = obj.NAME_PARAM case PFUNC: a.Name = obj.NAME_EXTERN a.Type = obj.TYPE_ADDR a.Width = int64(Widthptr) s = funcsym(s) } a.Sym = Linksym(s) case ODOT: // A special case to make write barriers more efficient. // Taking the address of the first field of a named struct // is the same as taking the address of the struct. if n.Left.Type.Etype != TSTRUCT || n.Left.Type.Type.Sym != n.Right.Sym { Debug['h'] = 1 Dump("naddr", n) Fatalf("naddr: bad %v %v", Oconv(int(n.Op), 0), Ctxt.Dconv(a)) } Naddr(a, n.Left) case OLITERAL: if Thearch.Thechar == '8' { a.Width = 0 } switch n.Val().Ctype() { default: Fatalf("naddr: const %v", Tconv(n.Type, obj.FmtLong)) case CTFLT: a.Type = obj.TYPE_FCONST a.Val = mpgetflt(n.Val().U.(*Mpflt)) case CTINT, CTRUNE: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = Mpgetfix(n.Val().U.(*Mpint)) case CTSTR: datagostring(n.Val().U.(string), a) case CTBOOL: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = int64(obj.Bool2int(n.Val().U.(bool))) case CTNIL: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = 0 } case OADDR: Naddr(a, n.Left) a.Etype = uint8(Tptr) if Thearch.Thechar != '0' && Thearch.Thechar != '5' && Thearch.Thechar != '7' && Thearch.Thechar != '9' { // TODO(rsc): Do this even for arm, ppc64. a.Width = int64(Widthptr) } if a.Type != obj.TYPE_MEM { a := a // copy to let escape into Ctxt.Dconv Fatalf("naddr: OADDR %v (from %v)", Ctxt.Dconv(a), Oconv(int(n.Left.Op), 0)) } a.Type = obj.TYPE_ADDR // itable of interface value case OITAB: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // itab(nil) } a.Etype = uint8(Tptr) a.Width = int64(Widthptr) // pointer in a string or slice case OSPTR: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // ptr(nil) } a.Etype = uint8(Simtype[Tptr]) a.Offset += int64(Array_array) a.Width = int64(Widthptr) // len of string or slice case OLEN: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // len(nil) } a.Etype = uint8(Simtype[TUINT]) a.Offset += int64(Array_nel) if Thearch.Thechar != '5' { // TODO(rsc): Do this even on arm. a.Width = int64(Widthint) } // cap of string or slice case OCAP: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // cap(nil) } a.Etype = uint8(Simtype[TUINT]) a.Offset += int64(Array_cap) if Thearch.Thechar != '5' { // TODO(rsc): Do this even on arm. a.Width = int64(Widthint) } } return }