// Return the value for vector c which best fits the linear model y = Xc. // X is a matrix given by its row vectors: each row corresponds to a y value; // columns within the row correspond to coefficients for parameters in c. func Linear(y vec.Vector, X []vec.Vector) vec.Vector { n := C.size_t(len(y)) // number of observations p := C.size_t(len(X[0])) // number of parameters c, gslY := C.gsl_vector_alloc(p), C.gsl_vector_alloc(n) cov, gslX := C.gsl_matrix_alloc(p, p), C.gsl_matrix_alloc(n, p) vecToGSL(y, gslY) matrixToGSL(X, gslX) chisq := C.double(0) work := C.gsl_multifit_linear_alloc(n, p) C.gsl_multifit_linear(gslX, gslY, c, cov, &chisq, work) C.gsl_multifit_linear_free(work) result := vecFromGSL(c) C.gsl_matrix_free(gslX) C.gsl_matrix_free(cov) C.gsl_vector_free(gslY) C.gsl_vector_free(c) return result }
func GslMultifitLinearAlloc(n int, p int) *GslMultifitLinearWorkspace { _ref := C.gsl_multifit_linear_alloc(C.size_t(n), C.size_t(p)) _result := &GslMultifitLinearWorkspace{} gogsl.InitializeGslReference(_result, uintptr(unsafe.Pointer(_ref))) return _result }