func (e *exporter) addImport(pkg *types.Package) { if _, found := e.imports[pkg]; found { return } fmt.Fprintf(e.out, "import %s \"%s\"\n", pkg.Name(), pkg.Path()) e.imports[pkg] = true }
func (x *exporter) export(pkg *types.Package) error { x.pkg = pkg x.writeFunc = true exportsFile := packageExportsFile(x.context, pkg.Path()) err := os.MkdirAll(filepath.Dir(exportsFile), 0755) if err != nil && !os.IsExist(err) { return err } f2, err := os.Create(exportsFile) if err != nil { return err } defer f2.Close() x.writer = f2 x.write("package %s\n", pkg.Name()) for _, imp := range pkg.Imports() { x.write("\timport %s \"%s\"\n", imp.Name(), imp.Path()) } for _, n := range pkg.Scope().Names() { if obj := pkg.Scope().Lookup(n); obj != nil { x.exportObject(obj) } } x.write("$$") return nil }
// pkgpath returns a package path suitable for naming symbols. func pkgpath(p *types.Package) string { path := p.Path() name := p.Name() if path == "" || name == "main" { path = p.Name() } return path }
func typePackageToJson(p *types.Package) interface{} { if p == nil { return nil } else { return struct { Isa, Name, ImportPath string }{ "Package", p.Name(), p.Path(), } } }
// pkgString returns a string representation of a package's exported interface. func pkgString(pkg *types.Package) string { var buf bytes.Buffer fmt.Fprintf(&buf, "package %s\n", pkg.Name()) scope := pkg.Scope() for _, name := range scope.Names() { if exported(name) { obj := scope.Lookup(name) buf.WriteString(obj.String()) switch obj := obj.(type) { case *types.Const: // For now only print constant values if they are not float // or complex. This permits comparing go/types results with // gc-generated gcimported package interfaces. info := obj.Type().Underlying().(*types.Basic).Info() if info&types.IsFloat == 0 && info&types.IsComplex == 0 { fmt.Fprintf(&buf, " = %s", obj.Val()) } case *types.TypeName: // Print associated methods. // Basic types (e.g., unsafe.Pointer) have *types.Basic // type rather than *types.Named; so we need to check. if typ, _ := obj.Type().(*types.Named); typ != nil { if n := typ.NumMethods(); n > 0 { // Sort methods by name so that we get the // same order independent of whether the // methods got imported or coming directly // for the source. // TODO(gri) This should probably be done // in go/types. list := make([]*types.Func, n) for i := 0; i < n; i++ { list[i] = typ.Method(i) } sort.Sort(byName(list)) buf.WriteString("\nmethods (\n") for _, m := range list { fmt.Fprintf(&buf, "\t%s\n", m) } buf.WriteString(")") } } } buf.WriteByte('\n') } } return buf.String() }
func testExportImport(t *testing.T, pkg0 *types.Package, path string) (size, gcsize int) { data := ExportData(pkg0) size = len(data) imports := make(map[string]*types.Package) n, pkg1, err := ImportData(imports, data) if err != nil { t.Errorf("package %s: import failed: %s", pkg0.Name(), err) return } if n != size { t.Errorf("package %s: not all input data consumed", pkg0.Name()) return } s0 := pkgString(pkg0) s1 := pkgString(pkg1) if s1 != s0 { t.Errorf("package %s: \nimport got:\n%s\nwant:\n%s\n", pkg0.Name(), s1, s0) } // If we have a standard library, compare also against the gcimported package. if path == "" { return // not std library } gcdata, err := gcExportData(path) gcsize = len(gcdata) imports = make(map[string]*types.Package) pkg2, err := gcImportData(imports, gcdata, path) if err != nil { t.Errorf("package %s: gcimport failed: %s", pkg0.Name(), err) return } s2 := pkgString(pkg2) if s2 != s0 { t.Errorf("package %s: \ngcimport got:\n%s\nwant:\n%s\n", pkg0.Name(), s2, s0) } return }
func (p *exporter) pkg(pkg *types.Package) { if trace { p.tracef("package { ") defer p.tracef("} ") } if pkg == nil { panic("unexpected nil pkg") } // if the package was seen before, write its index (>= 0) if i, ok := p.pkgIndex[pkg]; ok { p.int(i) return } p.pkgIndex[pkg] = len(p.pkgIndex) // otherwise, write the package tag (< 0) and package data p.int(packageTag) p.string(pkg.Name()) p.string(pkg.Path()) }
// ExportData serializes the interface (exported package objects) // of package pkg and returns the corresponding data. The export // format is described elsewhere (TODO). func ExportData(pkg *types.Package) []byte { p := exporter{ data: []byte(magic), pkgIndex: make(map[*types.Package]int), typIndex: make(map[types.Type]int), } // populate typIndex with predeclared types for _, t := range types.Typ[1:] { p.typIndex[t] = len(p.typIndex) } p.typIndex[types.Universe.Lookup("error").Type()] = len(p.typIndex) if trace { p.tracef("export %s\n", pkg.Name()) defer p.tracef("\n") } p.string(version) p.pkg(pkg) // collect exported objects from package scope var list []types.Object scope := pkg.Scope() for _, name := range scope.Names() { if exported(name) { list = append(list, scope.Lookup(name)) } } // write objects p.int(len(list)) for _, obj := range list { p.obj(obj) } return p.data }
func (c *exporter) Export(pkg *types.Package) error { c.pkg = pkg c.writeFunc = true f2, err := os.Create(c.compiler.packageExportsFile(pkg.Path())) if err != nil { return err } defer f2.Close() c.writer = f2 c.write("package %s\n", pkg.Name()) for _, imp := range c.pkg.Imports() { c.write("\timport %s \"%s\"\n", imp.Name(), imp.Path()) } for _, n := range pkg.Scope().Names() { if obj := pkg.Scope().Lookup(n); obj != nil { c.exportObject(obj) } } c.write("$$") return nil }
func (p *printer) printPackage(pkg *types.Package, filter func(types.Object) bool) { // collect objects by kind var ( consts []*types.Const typem []*types.Named // non-interface types with methods typez []*types.TypeName // interfaces or types without methods vars []*types.Var funcs []*types.Func builtins []*types.Builtin methods = make(map[*types.Named][]*types.Selection) // method sets for named types ) scope := pkg.Scope() for _, name := range scope.Names() { obj := scope.Lookup(name) if obj.Exported() { // collect top-level exported and possibly filtered objects if filter == nil || filter(obj) { switch obj := obj.(type) { case *types.Const: consts = append(consts, obj) case *types.TypeName: // group into types with methods and types without if named, m := methodsFor(obj); named != nil { typem = append(typem, named) methods[named] = m } else { typez = append(typez, obj) } case *types.Var: vars = append(vars, obj) case *types.Func: funcs = append(funcs, obj) case *types.Builtin: // for unsafe.Sizeof, etc. builtins = append(builtins, obj) } } } else if filter == nil { // no filtering: collect top-level unexported types with methods if obj, _ := obj.(*types.TypeName); obj != nil { // see case *types.TypeName above if named, m := methodsFor(obj); named != nil { typem = append(typem, named) methods[named] = m } } } } p.printf("package %s // %q\n", pkg.Name(), pkg.Path()) p.printDecl("const", len(consts), func() { for _, obj := range consts { p.printObj(obj) p.print("\n") } }) p.printDecl("var", len(vars), func() { for _, obj := range vars { p.printObj(obj) p.print("\n") } }) p.printDecl("type", len(typez), func() { for _, obj := range typez { p.printf("%s ", obj.Name()) p.writeType(p.pkg, obj.Type().Underlying()) p.print("\n") } }) // non-interface types with methods for _, named := range typem { first := true if obj := named.Obj(); obj.Exported() { if first { p.print("\n") first = false } p.printf("type %s ", obj.Name()) p.writeType(p.pkg, named.Underlying()) p.print("\n") } for _, m := range methods[named] { if obj := m.Obj(); obj.Exported() { if first { p.print("\n") first = false } p.printFunc(m.Recv(), obj.(*types.Func)) p.print("\n") } } } if len(funcs) > 0 { p.print("\n") for _, obj := range funcs { p.printFunc(nil, obj) p.print("\n") } } // TODO(gri) better handling of builtins (package unsafe only) if len(builtins) > 0 { p.print("\n") for _, obj := range builtins { p.printf("func %s() // builtin\n", obj.Name()) } } p.print("\n") }
func (p *printer) printPackage(pkg *types.Package, filter func(types.Object) bool) { // collect objects by kind var ( consts []*types.Const typez []*types.TypeName // types without methods typem []*types.TypeName // types with methods vars []*types.Var funcs []*types.Func builtins []*types.Builtin ) scope := pkg.Scope() for _, name := range scope.Names() { obj := scope.Lookup(name) if !filter(obj) { continue } switch obj := obj.(type) { case *types.Const: consts = append(consts, obj) case *types.TypeName: if named, _ := obj.Type().(*types.Named); named != nil && named.NumMethods() > 0 { typem = append(typem, obj) } else { typez = append(typez, obj) } case *types.Var: vars = append(vars, obj) case *types.Func: funcs = append(funcs, obj) case *types.Builtin: // for unsafe.Sizeof, etc. builtins = append(builtins, obj) } } p.printf("package %s // %q\n\n", pkg.Name(), pkg.Path()) if len(consts) > 0 { p.print("const (\n") p.indent++ for _, obj := range consts { p.printObj(obj) p.print("\n") } p.indent-- p.print(")\n\n") } if len(vars) > 0 { p.print("var (\n") p.indent++ for _, obj := range vars { p.printObj(obj) p.print("\n") } p.indent-- p.print(")\n\n") } if len(typez) > 0 { p.print("type (\n") p.indent++ for _, obj := range typez { p.printf("%s ", obj.Name()) p.writeType(p.pkg, obj.Type().Underlying()) p.print("\n") } p.indent-- p.print(")\n\n") } for _, obj := range typem { p.printf("type %s ", obj.Name()) typ := obj.Type().(*types.Named) p.writeType(p.pkg, typ.Underlying()) p.print("\n") for i, n := 0, typ.NumMethods(); i < n; i++ { p.printFunc(typ.Method(i)) p.print("\n") } p.print("\n") } for _, obj := range funcs { p.printFunc(obj) p.print("\n") } // TODO(gri) better handling of builtins (package unsafe only) for _, obj := range builtins { p.printf("func %s() // builtin\n", obj.Name()) } p.print("\n") }
func Write(pkg *types.Package, out io.Writer, sizes types.Sizes) { fmt.Fprintf(out, "package %s\n", pkg.Name()) e := &exporter{pkg: pkg, imports: make(map[*types.Package]bool), out: out} for _, imp := range pkg.Imports() { e.addImport(imp) } for _, name := range pkg.Scope().Names() { obj := pkg.Scope().Lookup(name) _, isTypeName := obj.(*types.TypeName) if obj.Exported() || isTypeName { e.toExport = append(e.toExport, obj) } } for i := 0; i < len(e.toExport); i++ { switch o := e.toExport[i].(type) { case *types.TypeName: fmt.Fprintf(out, "type %s %s\n", e.makeName(o), e.makeType(o.Type().Underlying())) if _, isInterface := o.Type().Underlying().(*types.Interface); !isInterface { writeMethods := func(t types.Type) { methods := types.NewMethodSet(t) for i := 0; i < methods.Len(); i++ { m := methods.At(i) if len(m.Index()) > 1 { continue // method of embedded field } out.Write([]byte("func (? " + e.makeType(m.Recv()) + ") " + e.makeName(m.Obj()) + e.makeSignature(m.Type()) + "\n")) } } writeMethods(o.Type()) writeMethods(types.NewPointer(o.Type())) } case *types.Func: out.Write([]byte("func " + e.makeName(o) + e.makeSignature(o.Type()) + "\n")) case *types.Const: optType := "" basic, isBasic := o.Type().(*types.Basic) if !isBasic || basic.Info()&types.IsUntyped == 0 { optType = " " + e.makeType(o.Type()) } basic = o.Type().Underlying().(*types.Basic) var val string switch { case basic.Info()&types.IsBoolean != 0: val = strconv.FormatBool(exact.BoolVal(o.Val())) case basic.Info()&types.IsInteger != 0: if basic.Kind() == types.Uint64 { d, _ := exact.Uint64Val(o.Val()) val = fmt.Sprintf("%#x", d) break } d, _ := exact.Int64Val(o.Val()) if basic.Kind() == types.UntypedRune { switch { case d < 0 || d > unicode.MaxRune: val = fmt.Sprintf("('\\x00' + %d)", d) case d > 0xffff: val = fmt.Sprintf("'\\U%08x'", d) default: val = fmt.Sprintf("'\\u%04x'", d) } break } val = fmt.Sprintf("%#x", d) case basic.Info()&types.IsFloat != 0: f, _ := exact.Float64Val(o.Val()) val = strconv.FormatFloat(f, 'b', -1, 64) case basic.Info()&types.IsComplex != 0: r, _ := exact.Float64Val(exact.Real(o.Val())) i, _ := exact.Float64Val(exact.Imag(o.Val())) val = fmt.Sprintf("(%s+%si)", strconv.FormatFloat(r, 'b', -1, 64), strconv.FormatFloat(i, 'b', -1, 64)) case basic.Info()&types.IsString != 0: val = fmt.Sprintf("%#v", exact.StringVal(o.Val())) default: panic("Unhandled constant type: " + basic.String()) } out.Write([]byte("const " + e.makeName(o) + optType + " = " + val + "\n")) case *types.Var: out.Write([]byte("var " + e.makeName(o) + " " + e.makeType(o.Type()) + "\n")) default: panic(fmt.Sprintf("Unhandled object: %T\n", o)) } } fmt.Fprintf(out, "$$\n") }