func qr(a *matrix.DenseMatrix) (q, r *matrix.DenseMatrix) { m := a.Rows() n := a.Cols() q = matrix.Eye(m) last := n - 1 if m == n { last-- } for i := 0; i <= last; i++ { // (copy is only for compatibility with an older version of gomatrix) b := a.GetMatrix(i, i, m-i, n-i).Copy() x := b.GetColVector(0) h := matrix.Eye(m) h.SetMatrix(i, i, householder(x)) q, _ = q.TimesDense(h) a, _ = h.TimesDense(a) } return q, a }
func householder(a *matrix.DenseMatrix) *matrix.DenseMatrix { m := a.Rows() s := sign(a.Get(0, 0)) e := unitVector(m) u := matrix.Sum(a, matrix.Scaled(e, a.TwoNorm()*s)) v := matrix.Scaled(u, 1/u.Get(0, 0)) // (error checking skipped in this solution) prod, _ := v.Transpose().TimesDense(v) β := 2 / prod.Get(0, 0) prod, _ = v.TimesDense(v.Transpose()) return matrix.Difference(matrix.Eye(m), matrix.Scaled(prod, β)) }
// y: Measurments // u: Actuator thrust func (k *ExtKalmanFilter) Step(y, u matrix.Matrix) (x matrix.Matrix) { var y_ = k.h(k.x) var H = k.dhdx(k.x) var Ht = matrix.Transpose(H) // ----------------- // Estimation // Kalman gain matrix // K = P * H^t * (H*P*Ht + R)⁻¹ var inv = matrix.Inverse(matrix.Sum(matrix.Product(H, k.mP, Ht), k.mR)) var K = matrix.Product(k.mP, Ht, inv) var Kt = matrix.Transpose(K) // State estimation update // x_ = x + K * (y - h(x)) var ydiff, _ = y.Minus(y_) if k.normalize_ydiff != nil { ydiff = k.normalize_ydiff(ydiff) } var x_ = matrix.Sum(k.x, matrix.Product(K, ydiff)) // Error covariance update // P_ = (I - K*H) * P * (I - K*H)^t + K*R*K^t var IKH, _ = matrix.Eye(H.Cols()).Minus(matrix.Product(K, H)) var IKHt = matrix.Transpose(IKH) var P_ = matrix.Sum(matrix.Product(IKH, k.mP, IKHt), matrix.Product(K, k.mR, Kt)) // ----------------- // Propagation var F = k.dfdx(x_, u) var Ft = matrix.Transpose(F) // State estimation propagation // x(k+1) = A*x_(k) + B*u k.x = k.f(x_, u) // Error covariance propagation // P(k+1) = A*P_*A^t + W*Q*W^t k.mP = matrix.Sum(matrix.Product(F, P_, Ft), k.cWQWt) return k.x }