func handlePacket(packet gopacket.Packet, counter chan *PacketCount) { appLayer := packet.ApplicationLayer() if appLayer == nil { return } if networkLayer := packet.NetworkLayer(); networkLayer != nil { srcIP := networkLayer.NetworkFlow().Src().String() dstIP := networkLayer.NetworkFlow().Dst().String() meta := packet.Metadata() counter <- &PacketCount{ src: srcIP, dst: dstIP, size: uint64(meta.Length), } } }
// Packet information digestion ------------------------------------------------------ // function that takes the raw packet and creates a GPPacket structure from it. Initial // sanity checking has been performed in the function above, so we can now check whether // the packet can be decoded directly func (g *GPCapture) handlePacket(curPack gopacket.Packet) (*GPPacket, error) { // process metadata var numBytes uint16 = uint16(curPack.Metadata().CaptureInfo.Length) // read the direction from which the packet entered the interface isInboundTraffic := false if curPack.Metadata().CaptureInfo.Inbound == 1 { isInboundTraffic = true } // initialize vars (GO ensures that all variables are initialized with their // respective zero element) var ( src, dst []byte = zeroip, zeroip sp, dp []byte = zeroport, zeroport // the default value is reserved by IANA and thus will never occur unless // the protocol could not be correctly identified proto byte = 0xff fragBits byte = 0x00 fragOffset uint16 TCPflags uint8 l7payload []byte = zeropayload l7payloadSize uint16 // size helper vars nlHeaderSize uint16 tpHeaderSize uint16 ) // decode rest of packet if curPack.NetworkLayer() != nil { nw_l := curPack.NetworkLayer().LayerContents() nlHeaderSize = uint16(len(nw_l)) // exit if layer is available but the bytes aren't captured by the layer // contents if nlHeaderSize == 0 { return nil, errors.New("Network layer header not available") } // get ip info ipsrc, ipdst := curPack.NetworkLayer().NetworkFlow().Endpoints() src = ipsrc.Raw() dst = ipdst.Raw() // read out the next layer protocol switch curPack.NetworkLayer().LayerType() { case layers.LayerTypeIPv4: proto = nw_l[9] // check for IP fragmentation fragBits = (0xe0 & nw_l[6]) >> 5 fragOffset = (uint16(0x1f & nw_l[6]) << 8) | uint16(nw_l[7]) // return decoding error if the packet carries anything other than the // first fragment, i.e. if the packet lacks a transport layer header if fragOffset != 0 { return nil, errors.New("Fragmented IP packet: offset: "+strconv.FormatUint(uint64(fragOffset), 10)+" flags: "+strconv.FormatUint(uint64(fragBits), 10)) } case layers.LayerTypeIPv6: proto = nw_l[6] } if curPack.TransportLayer() != nil { // get layer contents tp_l := curPack.TransportLayer().LayerContents() tpHeaderSize = uint16(len(tp_l)) if tpHeaderSize == 0 { return nil, errors.New("Transport layer header not available") } // get port bytes psrc, dsrc := curPack.TransportLayer().TransportFlow().Endpoints() // only get raw bytes if we actually have TCP or UDP if proto == 6 || proto == 17 { sp = psrc.Raw() dp = dsrc.Raw() } // if the protocol is TCP, grab the flag information if proto == 6 { if tpHeaderSize < 14 { return nil, errors.New("Incomplete TCP header: "+string(tp_l)) } TCPflags = tp_l[13] // we are primarily interested in SYN, ACK and FIN } // grab the next layer payload's first 4 bytes and calculate // the layer 7 payload size if the application layer could // be correctly decoded if curPack.ApplicationLayer() != nil { pl := curPack.ApplicationLayer().Payload() lenPayload := len(pl) if lenPayload >= 4 { l7payload = pl[0:4] } else { for i := 0; i < lenPayload; i++ { l7payload[i] = pl[i] } } } l7payloadSize = numBytes - tpHeaderSize - nlHeaderSize } } else { return nil, errors.New("network layer decoding failed") } return NewGPPacket(src, dst, sp, dp, l7payload, l7payloadSize, proto, numBytes, TCPflags, isInboundTraffic), nil }