示例#1
0
文件: mining.go 项目: chrjen/btcd
// NewBlockTemplate returns a new block template that is ready to be solved
// using the transactions from the passed transaction source pool and a coinbase
// that either pays to the passed address if it is not nil, or a coinbase that
// is redeemable by anyone if the passed address is nil.  The nil address
// functionality is useful since there are cases such as the getblocktemplate
// RPC where external mining software is responsible for creating their own
// coinbase which will replace the one generated for the block template.  Thus
// the need to have configured address can be avoided.
//
// The transactions selected and included are prioritized according to several
// factors.  First, each transaction has a priority calculated based on its
// value, age of inputs, and size.  Transactions which consist of larger
// amounts, older inputs, and small sizes have the highest priority.  Second, a
// fee per kilobyte is calculated for each transaction.  Transactions with a
// higher fee per kilobyte are preferred.  Finally, the block generation related
// policy settings are all taken into account.
//
// Transactions which only spend outputs from other transactions already in the
// block chain are immediately added to a priority queue which either
// prioritizes based on the priority (then fee per kilobyte) or the fee per
// kilobyte (then priority) depending on whether or not the BlockPrioritySize
// policy setting allots space for high-priority transactions.  Transactions
// which spend outputs from other transactions in the source pool are added to a
// dependency map so they can be added to the priority queue once the
// transactions they depend on have been included.
//
// Once the high-priority area (if configured) has been filled with
// transactions, or the priority falls below what is considered high-priority,
// the priority queue is updated to prioritize by fees per kilobyte (then
// priority).
//
// When the fees per kilobyte drop below the TxMinFreeFee policy setting, the
// transaction will be skipped unless the BlockMinSize policy setting is
// nonzero, in which case the block will be filled with the low-fee/free
// transactions until the block size reaches that minimum size.
//
// Any transactions which would cause the block to exceed the BlockMaxSize
// policy setting, exceed the maximum allowed signature operations per block, or
// otherwise cause the block to be invalid are skipped.
//
// Given the above, a block generated by this function is of the following form:
//
//   -----------------------------------  --  --
//  |      Coinbase Transaction         |   |   |
//  |-----------------------------------|   |   |
//  |                                   |   |   | ----- policy.BlockPrioritySize
//  |   High-priority Transactions      |   |   |
//  |                                   |   |   |
//  |-----------------------------------|   | --
//  |                                   |   |
//  |                                   |   |
//  |                                   |   |--- policy.BlockMaxSize
//  |  Transactions prioritized by fee  |   |
//  |  until <= policy.TxMinFreeFee     |   |
//  |                                   |   |
//  |                                   |   |
//  |                                   |   |
//  |-----------------------------------|   |
//  |  Low-fee/Non high-priority (free) |   |
//  |  transactions (while block size   |   |
//  |  <= policy.BlockMinSize)          |   |
//   -----------------------------------  --
func NewBlockTemplate(policy *mining.Policy, server *server, payToAddress btcutil.Address) (*BlockTemplate, error) {
	var txSource mining.TxSource = server.txMemPool
	blockManager := server.blockManager
	timeSource := server.timeSource
	chainState := &blockManager.chainState

	// Extend the most recently known best block.
	chainState.Lock()
	prevHash := chainState.newestHash
	nextBlockHeight := chainState.newestHeight + 1
	chainState.Unlock()

	// Create a standard coinbase transaction paying to the provided
	// address.  NOTE: The coinbase value will be updated to include the
	// fees from the selected transactions later after they have actually
	// been selected.  It is created here to detect any errors early
	// before potentially doing a lot of work below.  The extra nonce helps
	// ensure the transaction is not a duplicate transaction (paying the
	// same value to the same public key address would otherwise be an
	// identical transaction for block version 1).
	extraNonce := uint64(0)
	coinbaseScript, err := standardCoinbaseScript(nextBlockHeight, extraNonce)
	if err != nil {
		return nil, err
	}
	coinbaseTx, err := createCoinbaseTx(coinbaseScript, nextBlockHeight,
		payToAddress)
	if err != nil {
		return nil, err
	}
	numCoinbaseSigOps := int64(blockchain.CountSigOps(coinbaseTx))

	// Get the current source transactions and create a priority queue to
	// hold the transactions which are ready for inclusion into a block
	// along with some priority related and fee metadata.  Reserve the same
	// number of items that are available for the priority queue.  Also,
	// choose the initial sort order for the priority queue based on whether
	// or not there is an area allocated for high-priority transactions.
	sourceTxns := txSource.MiningDescs()
	sortedByFee := policy.BlockPrioritySize == 0
	priorityQueue := newTxPriorityQueue(len(sourceTxns), sortedByFee)

	// Create a slice to hold the transactions to be included in the
	// generated block with reserved space.  Also create a transaction
	// store to house all of the input transactions so multiple lookups
	// can be avoided.
	blockTxns := make([]*btcutil.Tx, 0, len(sourceTxns))
	blockTxns = append(blockTxns, coinbaseTx)
	blockTxStore := make(blockchain.TxStore)

	// dependers is used to track transactions which depend on another
	// transaction in the source pool.  This, in conjunction with the
	// dependsOn map kept with each dependent transaction helps quickly
	// determine which dependent transactions are now eligible for inclusion
	// in the block once each transaction has been included.
	dependers := make(map[wire.ShaHash]*list.List)

	// Create slices to hold the fees and number of signature operations
	// for each of the selected transactions and add an entry for the
	// coinbase.  This allows the code below to simply append details about
	// a transaction as it is selected for inclusion in the final block.
	// However, since the total fees aren't known yet, use a dummy value for
	// the coinbase fee which will be updated later.
	txFees := make([]int64, 0, len(sourceTxns))
	txSigOpCounts := make([]int64, 0, len(sourceTxns))
	txFees = append(txFees, -1) // Updated once known
	txSigOpCounts = append(txSigOpCounts, numCoinbaseSigOps)

	minrLog.Debugf("Considering %d transactions for inclusion to new block",
		len(sourceTxns))

mempoolLoop:
	for _, txDesc := range sourceTxns {
		// A block can't have more than one coinbase or contain
		// non-finalized transactions.
		tx := txDesc.Tx
		if blockchain.IsCoinBase(tx) {
			minrLog.Tracef("Skipping coinbase tx %s", tx.Sha())
			continue
		}
		if !blockchain.IsFinalizedTransaction(tx, nextBlockHeight,
			timeSource.AdjustedTime()) {

			minrLog.Tracef("Skipping non-finalized tx %s", tx.Sha())
			continue
		}

		// Fetch all of the transactions referenced by the inputs to
		// this transaction.  NOTE: This intentionally does not fetch
		// inputs from the mempool since a transaction which depends on
		// other transactions in the mempool must come after those
		// dependencies in the final generated block.
		txStore, err := blockManager.FetchTransactionStore(tx)
		if err != nil {
			minrLog.Warnf("Unable to fetch transaction store for "+
				"tx %s: %v", tx.Sha(), err)
			continue
		}

		// Setup dependencies for any transactions which reference
		// other transactions in the mempool so they can be properly
		// ordered below.
		prioItem := &txPrioItem{tx: tx}
		for _, txIn := range tx.MsgTx().TxIn {
			originHash := &txIn.PreviousOutPoint.Hash
			originIndex := txIn.PreviousOutPoint.Index
			txData, exists := txStore[*originHash]
			if !exists || txData.Err != nil || txData.Tx == nil {
				if !txSource.HaveTransaction(originHash) {
					minrLog.Tracef("Skipping tx %s because "+
						"it references tx %s which is "+
						"not available", tx.Sha,
						originHash)
					continue mempoolLoop
				}

				// The transaction is referencing another
				// transaction in the source pool, so setup an
				// ordering dependency.
				depList, exists := dependers[*originHash]
				if !exists {
					depList = list.New()
					dependers[*originHash] = depList
				}
				depList.PushBack(prioItem)
				if prioItem.dependsOn == nil {
					prioItem.dependsOn = make(
						map[wire.ShaHash]struct{})
				}
				prioItem.dependsOn[*originHash] = struct{}{}

				// Skip the check below. We already know the
				// referenced transaction is available.
				continue
			}

			// Ensure the output index in the referenced transaction
			// is available.
			msgTx := txData.Tx.MsgTx()
			if originIndex > uint32(len(msgTx.TxOut)) {
				minrLog.Tracef("Skipping tx %s because "+
					"it references output %d of tx %s "+
					"which is out of bounds", tx.Sha,
					originIndex, originHash)
				continue mempoolLoop
			}
		}

		// Calculate the final transaction priority using the input
		// value age sum as well as the adjusted transaction size.  The
		// formula is: sum(inputValue * inputAge) / adjustedTxSize
		prioItem.priority = calcPriority(tx.MsgTx(), txStore, nextBlockHeight)

		// Calculate the fee in Satoshi/kB.
		txSize := tx.MsgTx().SerializeSize()
		prioItem.feePerKB = (txDesc.Fee * 1000) / int64(txSize)
		prioItem.fee = txDesc.Fee

		// Add the transaction to the priority queue to mark it ready
		// for inclusion in the block unless it has dependencies.
		if prioItem.dependsOn == nil {
			heap.Push(priorityQueue, prioItem)
		}

		// Merge the store which contains all of the input transactions
		// for this transaction into the input transaction store.  This
		// allows the code below to avoid a second lookup.
		mergeTxStore(blockTxStore, txStore)
	}

	minrLog.Tracef("Priority queue len %d, dependers len %d",
		priorityQueue.Len(), len(dependers))

	// The starting block size is the size of the block header plus the max
	// possible transaction count size, plus the size of the coinbase
	// transaction.
	blockSize := blockHeaderOverhead + uint32(coinbaseTx.MsgTx().SerializeSize())
	blockSigOps := numCoinbaseSigOps
	totalFees := int64(0)

	// Choose which transactions make it into the block.
	for priorityQueue.Len() > 0 {
		// Grab the highest priority (or highest fee per kilobyte
		// depending on the sort order) transaction.
		prioItem := heap.Pop(priorityQueue).(*txPrioItem)
		tx := prioItem.tx

		// Grab the list of transactions which depend on this one (if
		// any) and remove the entry for this transaction as it will
		// either be included or skipped, but in either case the deps
		// are no longer needed.
		deps := dependers[*tx.Sha()]
		delete(dependers, *tx.Sha())

		// Enforce maximum block size.  Also check for overflow.
		txSize := uint32(tx.MsgTx().SerializeSize())
		blockPlusTxSize := blockSize + txSize
		if blockPlusTxSize < blockSize || blockPlusTxSize >= policy.BlockMaxSize {
			minrLog.Tracef("Skipping tx %s because it would exceed "+
				"the max block size", tx.Sha())
			logSkippedDeps(tx, deps)
			continue
		}

		// Enforce maximum signature operations per block.  Also check
		// for overflow.
		numSigOps := int64(blockchain.CountSigOps(tx))
		if blockSigOps+numSigOps < blockSigOps ||
			blockSigOps+numSigOps > blockchain.MaxSigOpsPerBlock {
			minrLog.Tracef("Skipping tx %s because it would "+
				"exceed the maximum sigops per block", tx.Sha())
			logSkippedDeps(tx, deps)
			continue
		}
		numP2SHSigOps, err := blockchain.CountP2SHSigOps(tx, false,
			blockTxStore)
		if err != nil {
			minrLog.Tracef("Skipping tx %s due to error in "+
				"CountP2SHSigOps: %v", tx.Sha(), err)
			logSkippedDeps(tx, deps)
			continue
		}
		numSigOps += int64(numP2SHSigOps)
		if blockSigOps+numSigOps < blockSigOps ||
			blockSigOps+numSigOps > blockchain.MaxSigOpsPerBlock {
			minrLog.Tracef("Skipping tx %s because it would "+
				"exceed the maximum sigops per block (p2sh)",
				tx.Sha())
			logSkippedDeps(tx, deps)
			continue
		}

		// Skip free transactions once the block is larger than the
		// minimum block size.
		if sortedByFee &&
			prioItem.feePerKB < int64(policy.TxMinFreeFee) &&
			blockPlusTxSize >= policy.BlockMinSize {

			minrLog.Tracef("Skipping tx %s with feePerKB %.2f "+
				"< TxMinFreeFee %d and block size %d >= "+
				"minBlockSize %d", tx.Sha(), prioItem.feePerKB,
				policy.TxMinFreeFee, blockPlusTxSize,
				policy.BlockMinSize)
			logSkippedDeps(tx, deps)
			continue
		}

		// Prioritize by fee per kilobyte once the block is larger than
		// the priority size or there are no more high-priority
		// transactions.
		if !sortedByFee && (blockPlusTxSize >= policy.BlockPrioritySize ||
			prioItem.priority <= minHighPriority) {

			minrLog.Tracef("Switching to sort by fees per "+
				"kilobyte blockSize %d >= BlockPrioritySize "+
				"%d || priority %.2f <= minHighPriority %.2f",
				blockPlusTxSize, policy.BlockPrioritySize,
				prioItem.priority, minHighPriority)

			sortedByFee = true
			priorityQueue.SetLessFunc(txPQByFee)

			// Put the transaction back into the priority queue and
			// skip it so it is re-priortized by fees if it won't
			// fit into the high-priority section or the priority is
			// too low.  Otherwise this transaction will be the
			// final one in the high-priority section, so just fall
			// though to the code below so it is added now.
			if blockPlusTxSize > policy.BlockPrioritySize ||
				prioItem.priority < minHighPriority {

				heap.Push(priorityQueue, prioItem)
				continue
			}
		}

		// Ensure the transaction inputs pass all of the necessary
		// preconditions before allowing it to be added to the block.
		_, err = blockchain.CheckTransactionInputs(tx, nextBlockHeight,
			blockTxStore)
		if err != nil {
			minrLog.Tracef("Skipping tx %s due to error in "+
				"CheckTransactionInputs: %v", tx.Sha(), err)
			logSkippedDeps(tx, deps)
			continue
		}
		err = blockchain.ValidateTransactionScripts(tx, blockTxStore,
			txscript.StandardVerifyFlags, server.sigCache)
		if err != nil {
			minrLog.Tracef("Skipping tx %s due to error in "+
				"ValidateTransactionScripts: %v", tx.Sha(), err)
			logSkippedDeps(tx, deps)
			continue
		}

		// Spend the transaction inputs in the block transaction store
		// and add an entry for it to ensure any transactions which
		// reference this one have it available as an input and can
		// ensure they aren't double spending.
		spendTransaction(blockTxStore, tx, nextBlockHeight)

		// Add the transaction to the block, increment counters, and
		// save the fees and signature operation counts to the block
		// template.
		blockTxns = append(blockTxns, tx)
		blockSize += txSize
		blockSigOps += numSigOps
		totalFees += prioItem.fee
		txFees = append(txFees, prioItem.fee)
		txSigOpCounts = append(txSigOpCounts, numSigOps)

		minrLog.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)",
			prioItem.tx.Sha(), prioItem.priority, prioItem.feePerKB)

		// Add transactions which depend on this one (and also do not
		// have any other unsatisified dependencies) to the priority
		// queue.
		if deps != nil {
			for e := deps.Front(); e != nil; e = e.Next() {
				// Add the transaction to the priority queue if
				// there are no more dependencies after this
				// one.
				item := e.Value.(*txPrioItem)
				delete(item.dependsOn, *tx.Sha())
				if len(item.dependsOn) == 0 {
					heap.Push(priorityQueue, item)
				}
			}
		}
	}

	// Now that the actual transactions have been selected, update the
	// block size for the real transaction count and coinbase value with
	// the total fees accordingly.
	blockSize -= wire.MaxVarIntPayload -
		uint32(wire.VarIntSerializeSize(uint64(len(blockTxns))))
	coinbaseTx.MsgTx().TxOut[0].Value += totalFees
	txFees[0] = -totalFees

	// Calculate the required difficulty for the block.  The timestamp
	// is potentially adjusted to ensure it comes after the median time of
	// the last several blocks per the chain consensus rules.
	ts, err := medianAdjustedTime(chainState, timeSource)
	if err != nil {
		return nil, err
	}
	requiredDifficulty, err := blockManager.CalcNextRequiredDifficulty(ts)
	if err != nil {
		return nil, err
	}

	// Create a new block ready to be solved.
	merkles := blockchain.BuildMerkleTreeStore(blockTxns)
	var msgBlock wire.MsgBlock
	msgBlock.Header = wire.BlockHeader{
		Version:    generatedBlockVersion,
		PrevBlock:  *prevHash,
		MerkleRoot: *merkles[len(merkles)-1],
		Timestamp:  ts,
		Bits:       requiredDifficulty,
	}
	for _, tx := range blockTxns {
		if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil {
			return nil, err
		}
	}

	// Finally, perform a full check on the created block against the chain
	// consensus rules to ensure it properly connects to the current best
	// chain with no issues.
	block := btcutil.NewBlock(&msgBlock)
	block.SetHeight(nextBlockHeight)
	if err := blockManager.CheckConnectBlock(block); err != nil {
		return nil, err
	}

	minrLog.Debugf("Created new block template (%d transactions, %d in "+
		"fees, %d signature operations, %d bytes, target difficulty "+
		"%064x)", len(msgBlock.Transactions), totalFees, blockSigOps,
		blockSize, blockchain.CompactToBig(msgBlock.Header.Bits))

	return &BlockTemplate{
		block:           &msgBlock,
		fees:            txFees,
		sigOpCounts:     txSigOpCounts,
		height:          nextBlockHeight,
		validPayAddress: payToAddress != nil,
	}, nil
}
示例#2
0
文件: mempool.go 项目: chrjen/btcd
// maybeAcceptTransaction is the internal function which implements the public
// MaybeAcceptTransaction.  See the comment for MaybeAcceptTransaction for
// more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) maybeAcceptTransaction(tx *btcutil.Tx, isNew, rateLimit bool) ([]*wire.ShaHash, error) {
	txHash := tx.Sha()

	// Don't accept the transaction if it already exists in the pool.  This
	// applies to orphan transactions as well.  This check is intended to
	// be a quick check to weed out duplicates.
	if mp.haveTransaction(txHash) {
		str := fmt.Sprintf("already have transaction %v", txHash)
		return nil, txRuleError(wire.RejectDuplicate, str)
	}

	// Perform preliminary sanity checks on the transaction.  This makes
	// use of btcchain which contains the invariant rules for what
	// transactions are allowed into blocks.
	err := blockchain.CheckTransactionSanity(tx)
	if err != nil {
		if cerr, ok := err.(blockchain.RuleError); ok {
			return nil, chainRuleError(cerr)
		}
		return nil, err
	}

	// A standalone transaction must not be a coinbase transaction.
	if blockchain.IsCoinBase(tx) {
		str := fmt.Sprintf("transaction %v is an individual coinbase",
			txHash)
		return nil, txRuleError(wire.RejectInvalid, str)
	}

	// Don't accept transactions with a lock time after the maximum int32
	// value for now.  This is an artifact of older bitcoind clients which
	// treated this field as an int32 and would treat anything larger
	// incorrectly (as negative).
	if tx.MsgTx().LockTime > math.MaxInt32 {
		str := fmt.Sprintf("transaction %v has a lock time after "+
			"2038 which is not accepted yet", txHash)
		return nil, txRuleError(wire.RejectNonstandard, str)
	}

	// Get the current height of the main chain.  A standalone transaction
	// will be mined into the next block at best, so it's height is at least
	// one more than the current height.
	_, curHeight, err := mp.cfg.NewestSha()
	if err != nil {
		// This is an unexpected error so don't turn it into a rule
		// error.
		return nil, err
	}
	nextBlockHeight := curHeight + 1

	// Don't allow non-standard transactions if the network parameters
	// forbid their relaying.
	if !activeNetParams.RelayNonStdTxs {
		err := checkTransactionStandard(tx, nextBlockHeight,
			mp.cfg.TimeSource, mp.cfg.MinRelayTxFee)
		if err != nil {
			// Attempt to extract a reject code from the error so
			// it can be retained.  When not possible, fall back to
			// a non standard error.
			rejectCode, found := extractRejectCode(err)
			if !found {
				rejectCode = wire.RejectNonstandard
			}
			str := fmt.Sprintf("transaction %v is not standard: %v",
				txHash, err)
			return nil, txRuleError(rejectCode, str)
		}
	}

	// The transaction may not use any of the same outputs as other
	// transactions already in the pool as that would ultimately result in a
	// double spend.  This check is intended to be quick and therefore only
	// detects double spends within the transaction pool itself.  The
	// transaction could still be double spending coins from the main chain
	// at this point.  There is a more in-depth check that happens later
	// after fetching the referenced transaction inputs from the main chain
	// which examines the actual spend data and prevents double spends.
	err = mp.checkPoolDoubleSpend(tx)
	if err != nil {
		return nil, err
	}

	// Fetch all of the transactions referenced by the inputs to this
	// transaction.  This function also attempts to fetch the transaction
	// itself to be used for detecting a duplicate transaction without
	// needing to do a separate lookup.
	txStore, err := mp.fetchInputTransactions(tx, false)
	if err != nil {
		if cerr, ok := err.(blockchain.RuleError); ok {
			return nil, chainRuleError(cerr)
		}
		return nil, err
	}

	// Don't allow the transaction if it exists in the main chain and is not
	// not already fully spent.
	if txD, exists := txStore[*txHash]; exists && txD.Err == nil {
		for _, isOutputSpent := range txD.Spent {
			if !isOutputSpent {
				return nil, txRuleError(wire.RejectDuplicate,
					"transaction already exists")
			}
		}
	}
	delete(txStore, *txHash)

	// Transaction is an orphan if any of the referenced input transactions
	// don't exist.  Adding orphans to the orphan pool is not handled by
	// this function, and the caller should use maybeAddOrphan if this
	// behavior is desired.
	var missingParents []*wire.ShaHash
	for _, txD := range txStore {
		if txD.Err == database.ErrTxShaMissing {
			missingParents = append(missingParents, txD.Hash)
		}
	}
	if len(missingParents) > 0 {
		return missingParents, nil
	}

	// Perform several checks on the transaction inputs using the invariant
	// rules in btcchain for what transactions are allowed into blocks.
	// Also returns the fees associated with the transaction which will be
	// used later.
	txFee, err := blockchain.CheckTransactionInputs(tx, nextBlockHeight, txStore)
	if err != nil {
		if cerr, ok := err.(blockchain.RuleError); ok {
			return nil, chainRuleError(cerr)
		}
		return nil, err
	}

	// Don't allow transactions with non-standard inputs if the network
	// parameters forbid their relaying.
	if !activeNetParams.RelayNonStdTxs {
		err := checkInputsStandard(tx, txStore)
		if err != nil {
			// Attempt to extract a reject code from the error so
			// it can be retained.  When not possible, fall back to
			// a non standard error.
			rejectCode, found := extractRejectCode(err)
			if !found {
				rejectCode = wire.RejectNonstandard
			}
			str := fmt.Sprintf("transaction %v has a non-standard "+
				"input: %v", txHash, err)
			return nil, txRuleError(rejectCode, str)
		}
	}

	// NOTE: if you modify this code to accept non-standard transactions,
	// you should add code here to check that the transaction does a
	// reasonable number of ECDSA signature verifications.

	// Don't allow transactions with an excessive number of signature
	// operations which would result in making it impossible to mine.  Since
	// the coinbase address itself can contain signature operations, the
	// maximum allowed signature operations per transaction is less than
	// the maximum allowed signature operations per block.
	numSigOps, err := blockchain.CountP2SHSigOps(tx, false, txStore)
	if err != nil {
		if cerr, ok := err.(blockchain.RuleError); ok {
			return nil, chainRuleError(cerr)
		}
		return nil, err
	}
	numSigOps += blockchain.CountSigOps(tx)
	if numSigOps > maxSigOpsPerTx {
		str := fmt.Sprintf("transaction %v has too many sigops: %d > %d",
			txHash, numSigOps, maxSigOpsPerTx)
		return nil, txRuleError(wire.RejectNonstandard, str)
	}

	// Don't allow transactions with fees too low to get into a mined block.
	//
	// Most miners allow a free transaction area in blocks they mine to go
	// alongside the area used for high-priority transactions as well as
	// transactions with fees.  A transaction size of up to 1000 bytes is
	// considered safe to go into this section.  Further, the minimum fee
	// calculated below on its own would encourage several small
	// transactions to avoid fees rather than one single larger transaction
	// which is more desirable.  Therefore, as long as the size of the
	// transaction does not exceeed 1000 less than the reserved space for
	// high-priority transactions, don't require a fee for it.
	serializedSize := int64(tx.MsgTx().SerializeSize())
	minFee := calcMinRequiredTxRelayFee(serializedSize, mp.cfg.MinRelayTxFee)
	if serializedSize >= (defaultBlockPrioritySize-1000) && txFee < minFee {
		str := fmt.Sprintf("transaction %v has %d fees which is under "+
			"the required amount of %d", txHash, txFee,
			minFee)
		return nil, txRuleError(wire.RejectInsufficientFee, str)
	}

	// Require that free transactions have sufficient priority to be mined
	// in the next block.  Transactions which are being added back to the
	// memory pool from blocks that have been disconnected during a reorg
	// are exempted.
	if isNew && !mp.cfg.DisableRelayPriority && txFee < minFee {
		currentPriority := calcPriority(tx.MsgTx(), txStore,
			nextBlockHeight)
		if currentPriority <= minHighPriority {
			str := fmt.Sprintf("transaction %v has insufficient "+
				"priority (%g <= %g)", txHash,
				currentPriority, minHighPriority)
			return nil, txRuleError(wire.RejectInsufficientFee, str)
		}
	}

	// Free-to-relay transactions are rate limited here to prevent
	// penny-flooding with tiny transactions as a form of attack.
	if rateLimit && txFee < minFee {
		nowUnix := time.Now().Unix()
		// we decay passed data with an exponentially decaying ~10
		// minutes window - matches bitcoind handling.
		mp.pennyTotal *= math.Pow(1.0-1.0/600.0,
			float64(nowUnix-mp.lastPennyUnix))
		mp.lastPennyUnix = nowUnix

		// Are we still over the limit?
		if mp.pennyTotal >= mp.cfg.FreeTxRelayLimit*10*1000 {
			str := fmt.Sprintf("transaction %v has been rejected "+
				"by the rate limiter due to low fees", txHash)
			return nil, txRuleError(wire.RejectInsufficientFee, str)
		}
		oldTotal := mp.pennyTotal

		mp.pennyTotal += float64(serializedSize)
		txmpLog.Tracef("rate limit: curTotal %v, nextTotal: %v, "+
			"limit %v", oldTotal, mp.pennyTotal,
			mp.cfg.FreeTxRelayLimit*10*1000)
	}

	// Verify crypto signatures for each input and reject the transaction if
	// any don't verify.
	err = blockchain.ValidateTransactionScripts(tx, txStore,
		txscript.StandardVerifyFlags, mp.cfg.SigCache)
	if err != nil {
		if cerr, ok := err.(blockchain.RuleError); ok {
			return nil, chainRuleError(cerr)
		}
		return nil, err
	}

	// Add to transaction pool.
	mp.addTransaction(txStore, tx, curHeight, txFee)

	txmpLog.Debugf("Accepted transaction %v (pool size: %v)", txHash,
		len(mp.pool))

	return nil, nil
}