// createTestNode creates an rpc server using the specified address, // gossip instance, KV database and a node using the specified slice // of engines. The server, clock and node are returned. If gossipBS is // not nil, the gossip bootstrap address is set to gossipBS. func createTestNode(addr net.Addr, engines []engine.Engine, gossipBS net.Addr, t *testing.T) ( *rpc.Server, net.Addr, *hlc.Clock, *Node, *stop.Stopper) { ctx := storage.StoreContext{} stopper := stop.NewStopper() ctx.Clock = hlc.NewClock(hlc.UnixNano) nodeRPCContext := rpc.NewContext(nodeTestBaseContext, ctx.Clock, stopper) ctx.ScanInterval = 10 * time.Hour rpcServer := rpc.NewServer(nodeRPCContext) grpcServer := grpc.NewServer() tlsConfig, err := nodeRPCContext.GetServerTLSConfig() if err != nil { t.Fatal(err) } ln, err := util.ListenAndServe(stopper, grpcutil.GRPCHandlerFunc(grpcServer, rpcServer), addr, tlsConfig) if err != nil { t.Fatal(err) } g := gossip.New(nodeRPCContext, testContext.GossipBootstrapResolvers, stopper) if gossipBS != nil { // Handle possibility of a :0 port specification. if gossipBS.Network() == addr.Network() && gossipBS.String() == addr.String() { gossipBS = ln.Addr() } r, err := resolver.NewResolverFromAddress(gossipBS) if err != nil { t.Fatalf("bad gossip address %s: %s", gossipBS, err) } g.SetResolvers([]resolver.Resolver{r}) g.Start(grpcServer, ln.Addr()) } ctx.Gossip = g retryOpts := kv.GetDefaultDistSenderRetryOptions() retryOpts.Closer = stopper.ShouldDrain() distSender := kv.NewDistSender(&kv.DistSenderContext{ Clock: ctx.Clock, RPCContext: nodeRPCContext, RPCRetryOptions: &retryOpts, }, g) tracer := tracing.NewTracer() sender := kv.NewTxnCoordSender(distSender, ctx.Clock, false, tracer, stopper, kv.NewTxnMetrics(metric.NewRegistry())) ctx.DB = client.NewDB(sender) ctx.Transport = storage.NewDummyRaftTransport() ctx.EventFeed = util.NewFeed(stopper) ctx.Tracer = tracer node := NewNode(ctx, status.NewMetricsRecorder(ctx.Clock), stopper, kv.NewTxnMetrics(metric.NewRegistry())) return rpcServer, ln.Addr(), ctx.Clock, node, stopper }
// TestCorruptedClusterID verifies that a node fails to start when a // store's cluster ID is empty. func TestCorruptedClusterID(t *testing.T) { defer leaktest.AfterTest(t)() engineStopper := stop.NewStopper() e := engine.NewInMem(roachpb.Attributes{}, 1<<20, engineStopper) defer engineStopper.Stop() if _, err := bootstrapCluster([]engine.Engine{e}, kv.NewTxnMetrics(metric.NewRegistry())); err != nil { t.Fatal(err) } // Set the cluster ID to the empty UUID. sIdent := roachpb.StoreIdent{ ClusterID: *uuid.EmptyUUID, NodeID: 1, StoreID: 1, } if err := engine.MVCCPutProto(context.Background(), e, nil, keys.StoreIdentKey(), roachpb.ZeroTimestamp, nil, &sIdent); err != nil { t.Fatal(err) } engines := []engine.Engine{e} _, serverAddr, _, node, stopper := createTestNode(util.TestAddr, engines, nil, t) stopper.Stop() if err := node.start(serverAddr, engines, roachpb.Attributes{}); !testutils.IsError(err, "unidentified store") { t.Errorf("unexpected error %v", err) } }
// TestMultiRangeScanWithMaxResults tests that commands which access multiple // ranges with MaxResults parameter are carried out properly. func TestMultiRangeScanWithMaxResults(t *testing.T) { defer leaktest.AfterTest(t)() testCases := []struct { splitKeys []roachpb.Key keys []roachpb.Key }{ {[]roachpb.Key{roachpb.Key("m")}, []roachpb.Key{roachpb.Key("a"), roachpb.Key("z")}}, {[]roachpb.Key{roachpb.Key("h"), roachpb.Key("q")}, []roachpb.Key{roachpb.Key("b"), roachpb.Key("f"), roachpb.Key("k"), roachpb.Key("r"), roachpb.Key("w"), roachpb.Key("y")}}, } for i, tc := range testCases { s, _, _ := serverutils.StartServer(t, base.TestServerArgs{}) defer s.Stopper().Stop() ts := s.(*TestServer) retryOpts := base.DefaultRetryOptions() retryOpts.Closer = ts.stopper.ShouldDrain() ds := kv.NewDistSender(&kv.DistSenderContext{ Clock: s.Clock(), RPCContext: s.RPCContext(), RPCRetryOptions: &retryOpts, }, ts.Gossip()) tds := kv.NewTxnCoordSender(ds, ts.Clock(), ts.Ctx.Linearizable, tracing.NewTracer(), ts.stopper, kv.NewTxnMetrics(metric.NewRegistry())) for _, sk := range tc.splitKeys { if err := ts.node.ctx.DB.AdminSplit(sk); err != nil { t.Fatal(err) } } for _, k := range tc.keys { put := roachpb.NewPut(k, roachpb.MakeValueFromBytes(k)) if _, err := client.SendWrapped(tds, nil, put); err != nil { t.Fatal(err) } } // Try every possible ScanRequest startKey. for start := 0; start < len(tc.keys); start++ { // Try every possible maxResults, from 1 to beyond the size of key array. for maxResults := 1; maxResults <= len(tc.keys)-start+1; maxResults++ { scan := roachpb.NewScan(tc.keys[start], tc.keys[len(tc.keys)-1].Next(), int64(maxResults)) reply, err := client.SendWrapped(tds, nil, scan) if err != nil { t.Fatal(err) } rows := reply.(*roachpb.ScanResponse).Rows if start+maxResults <= len(tc.keys) && len(rows) != maxResults { t.Errorf("%d: start=%s: expected %d rows, but got %d", i, tc.keys[start], maxResults, len(rows)) } else if start+maxResults == len(tc.keys)+1 && len(rows) != maxResults-1 { t.Errorf("%d: expected %d rows, but got %d", i, maxResults-1, len(rows)) } } } } }
// createTestNode creates an rpc server using the specified address, // gossip instance, KV database and a node using the specified slice // of engines. The server, clock and node are returned. If gossipBS is // not nil, the gossip bootstrap address is set to gossipBS. func createTestNode(addr net.Addr, engines []engine.Engine, gossipBS net.Addr, t *testing.T) ( *grpc.Server, net.Addr, *hlc.Clock, *Node, *stop.Stopper) { ctx := storage.StoreContext{} stopper := stop.NewStopper() ctx.Clock = hlc.NewClock(hlc.UnixNano) nodeRPCContext := rpc.NewContext(nodeTestBaseContext, ctx.Clock, stopper) ctx.ScanInterval = 10 * time.Hour ctx.ConsistencyCheckInterval = 10 * time.Hour grpcServer := rpc.NewServer(nodeRPCContext) serverCtx := makeTestContext() g := gossip.New(nodeRPCContext, grpcServer, serverCtx.GossipBootstrapResolvers, stopper, metric.NewRegistry()) ln, err := netutil.ListenAndServeGRPC(stopper, grpcServer, addr) if err != nil { t.Fatal(err) } if gossipBS != nil { // Handle possibility of a :0 port specification. if gossipBS.Network() == addr.Network() && gossipBS.String() == addr.String() { gossipBS = ln.Addr() } r, err := resolver.NewResolverFromAddress(gossipBS) if err != nil { t.Fatalf("bad gossip address %s: %s", gossipBS, err) } g.SetResolvers([]resolver.Resolver{r}) g.Start(ln.Addr()) } ctx.Gossip = g retryOpts := base.DefaultRetryOptions() retryOpts.Closer = stopper.ShouldQuiesce() distSender := kv.NewDistSender(&kv.DistSenderContext{ Clock: ctx.Clock, RPCContext: nodeRPCContext, RPCRetryOptions: &retryOpts, }, g) tracer := tracing.NewTracer() sender := kv.NewTxnCoordSender(distSender, ctx.Clock, false, tracer, stopper, kv.NewTxnMetrics(metric.NewRegistry())) ctx.DB = client.NewDB(sender) ctx.Transport = storage.NewDummyRaftTransport() ctx.Tracer = tracer node := NewNode(ctx, status.NewMetricsRecorder(ctx.Clock), metric.NewRegistry(), stopper, kv.NewTxnMetrics(metric.NewRegistry()), sql.MakeEventLogger(nil)) roachpb.RegisterInternalServer(grpcServer, node) return grpcServer, ln.Addr(), ctx.Clock, node, stopper }
// TestNodeJoin verifies a new node is able to join a bootstrapped // cluster consisting of one node. func TestNodeJoin(t *testing.T) { defer leaktest.AfterTest(t)() engineStopper := stop.NewStopper() defer engineStopper.Stop() e := engine.NewInMem(roachpb.Attributes{}, 1<<20, engineStopper) if _, err := bootstrapCluster([]engine.Engine{e}, kv.NewTxnMetrics(metric.NewRegistry())); err != nil { t.Fatal(err) } // Start the bootstrap node. engines1 := []engine.Engine{e} addr1 := util.CreateTestAddr("tcp") _, server1Addr, node1, stopper1 := createAndStartTestNode(addr1, engines1, addr1, t) defer stopper1.Stop() // Create a new node. engines2 := []engine.Engine{engine.NewInMem(roachpb.Attributes{}, 1<<20, engineStopper)} addr2 := util.CreateTestAddr("tcp") _, server2Addr, node2, stopper2 := createAndStartTestNode(addr2, engines2, server1Addr, t) defer stopper2.Stop() // Verify new node is able to bootstrap its store. util.SucceedsSoon(t, func() error { if sc := node2.stores.GetStoreCount(); sc != 1 { return util.Errorf("GetStoreCount() expected 1; got %d", sc) } return nil }) // Verify node1 sees node2 via gossip and vice versa. node1Key := gossip.MakeNodeIDKey(node1.Descriptor.NodeID) node2Key := gossip.MakeNodeIDKey(node2.Descriptor.NodeID) util.SucceedsSoon(t, func() error { var nodeDesc1 roachpb.NodeDescriptor if err := node1.ctx.Gossip.GetInfoProto(node2Key, &nodeDesc1); err != nil { return err } if addr2Str, server2AddrStr := nodeDesc1.Address.String(), server2Addr.String(); addr2Str != server2AddrStr { return util.Errorf("addr2 gossip %s doesn't match addr2 address %s", addr2Str, server2AddrStr) } var nodeDesc2 roachpb.NodeDescriptor if err := node2.ctx.Gossip.GetInfoProto(node1Key, &nodeDesc2); err != nil { return err } if addr1Str, server1AddrStr := nodeDesc2.Address.String(), server1Addr.String(); addr1Str != server1AddrStr { return util.Errorf("addr1 gossip %s doesn't match addr1 address %s", addr1Str, server1AddrStr) } return nil }) }
// TestBootstrapNewStore starts a cluster with two unbootstrapped // stores and verifies both stores are added and started. func TestBootstrapNewStore(t *testing.T) { defer leaktest.AfterTest(t)() engineStopper := stop.NewStopper() defer engineStopper.Stop() e := engine.NewInMem(roachpb.Attributes{}, 1<<20, engineStopper) if _, err := bootstrapCluster([]engine.Engine{e}, kv.NewTxnMetrics(metric.NewRegistry())); err != nil { t.Fatal(err) } // Start a new node with two new stores which will require bootstrapping. engines := []engine.Engine{ e, engine.NewInMem(roachpb.Attributes{}, 1<<20, engineStopper), engine.NewInMem(roachpb.Attributes{}, 1<<20, engineStopper), } _, _, node, stopper := createAndStartTestNode(util.TestAddr, engines, util.TestAddr, t) defer stopper.Stop() // Non-initialized stores (in this case the new in-memory-based // store) will be bootstrapped by the node upon start. This happens // in a goroutine, so we'll have to wait a bit until we can find the // new node. util.SucceedsSoon(t, func() error { if n := node.stores.GetStoreCount(); n != 3 { return util.Errorf("expected 3 stores but got %d", n) } return nil }) // Check whether all stores are started properly. if err := node.stores.VisitStores(func(s *storage.Store) error { if s.IsStarted() == false { return util.Errorf("fail to start store: %s", s) } return nil }); err != nil { t.Error(err) } }
// TestBootstrapCluster verifies the results of bootstrapping a // cluster. Uses an in memory engine. func TestBootstrapCluster(t *testing.T) { defer leaktest.AfterTest(t)() stopper := stop.NewStopper() defer stopper.Stop() e := engine.NewInMem(roachpb.Attributes{}, 1<<20, stopper) if _, err := bootstrapCluster([]engine.Engine{e}, kv.NewTxnMetrics(metric.NewRegistry())); err != nil { t.Fatal(err) } // Scan the complete contents of the local database directly from the engine. rows, _, err := engine.MVCCScan(context.Background(), e, keys.LocalMax, roachpb.KeyMax, 0, roachpb.MaxTimestamp, true, nil) if err != nil { t.Fatal(err) } var foundKeys keySlice for _, kv := range rows { foundKeys = append(foundKeys, kv.Key) } var expectedKeys = keySlice{ testutils.MakeKey(roachpb.Key("\x02"), roachpb.KeyMax), testutils.MakeKey(roachpb.Key("\x03"), roachpb.KeyMax), roachpb.Key("\x04node-idgen"), roachpb.Key("\x04range-tree-root"), roachpb.Key("\x04store-idgen"), } // Add the initial keys for sql. for _, kv := range GetBootstrapSchema().GetInitialValues() { expectedKeys = append(expectedKeys, kv.Key) } // Resort the list. The sql values are not sorted. sort.Sort(expectedKeys) if !reflect.DeepEqual(foundKeys, expectedKeys) { t.Errorf("expected keys mismatch:\n%s\n -- vs. -- \n\n%s", formatKeys(foundKeys), formatKeys(expectedKeys)) } // TODO(spencer): check values. }
// NewServer creates a Server from a server.Context. func NewServer(ctx *Context, stopper *stop.Stopper) (*Server, error) { if ctx == nil { return nil, util.Errorf("ctx must not be null") } if _, err := net.ResolveTCPAddr("tcp", ctx.Addr); err != nil { return nil, util.Errorf("unable to resolve RPC address %q: %v", ctx.Addr, err) } if ctx.Insecure { log.Warning("running in insecure mode, this is strongly discouraged. See --insecure and --certs.") } // Try loading the TLS configs before anything else. if _, err := ctx.GetServerTLSConfig(); err != nil { return nil, err } if _, err := ctx.GetClientTLSConfig(); err != nil { return nil, err } s := &Server{ Tracer: tracing.NewTracer(), ctx: ctx, mux: http.NewServeMux(), clock: hlc.NewClock(hlc.UnixNano), stopper: stopper, } s.clock.SetMaxOffset(ctx.MaxOffset) s.rpcContext = crpc.NewContext(&ctx.Context, s.clock, stopper) stopper.RunWorker(func() { s.rpcContext.RemoteClocks.MonitorRemoteOffsets(stopper) }) s.rpc = crpc.NewServer(s.rpcContext) s.gossip = gossip.New(s.rpcContext, s.ctx.GossipBootstrapResolvers, stopper) s.storePool = storage.NewStorePool(s.gossip, s.clock, ctx.TimeUntilStoreDead, stopper) feed := util.NewFeed(stopper) // A custom RetryOptions is created which uses stopper.ShouldDrain() as // the Closer. This prevents infinite retry loops from occurring during // graceful server shutdown // // Such a loop loop occurs with the DistSender attempts a connection to the // local server during shutdown, and receives an internal server error (HTTP // Code 5xx). This is the correct error for a server to return when it is // shutting down, and is normally retryable in a cluster environment. // However, on a single-node setup (such as a test), retries will never // succeed because the only server has been shut down; thus, thus the // DistSender needs to know that it should not retry in this situation. retryOpts := kv.GetDefaultDistSenderRetryOptions() retryOpts.Closer = stopper.ShouldDrain() ds := kv.NewDistSender(&kv.DistSenderContext{ Clock: s.clock, RPCContext: s.rpcContext, RPCRetryOptions: &retryOpts, }, s.gossip) txnRegistry := metric.NewRegistry() txnMetrics := kv.NewTxnMetrics(txnRegistry) sender := kv.NewTxnCoordSender(ds, s.clock, ctx.Linearizable, s.Tracer, s.stopper, txnMetrics) s.db = client.NewDB(sender) s.grpc = grpc.NewServer() s.raftTransport = storage.NewRaftTransport(storage.GossipAddressResolver(s.gossip), s.grpc, s.rpcContext) s.kvDB = kv.NewDBServer(&s.ctx.Context, sender, stopper) if err := s.kvDB.RegisterRPC(s.rpc); err != nil { return nil, err } s.leaseMgr = sql.NewLeaseManager(0, *s.db, s.clock) s.leaseMgr.RefreshLeases(s.stopper, s.db, s.gossip) sqlRegistry := metric.NewRegistry() s.sqlExecutor = sql.NewExecutor(*s.db, s.gossip, s.leaseMgr, s.stopper, sqlRegistry) s.pgServer = pgwire.MakeServer(&s.ctx.Context, s.sqlExecutor, sqlRegistry) // TODO(bdarnell): make StoreConfig configurable. nCtx := storage.StoreContext{ Clock: s.clock, DB: s.db, Gossip: s.gossip, Transport: s.raftTransport, ScanInterval: s.ctx.ScanInterval, ScanMaxIdleTime: s.ctx.ScanMaxIdleTime, EventFeed: feed, Tracer: s.Tracer, StorePool: s.storePool, SQLExecutor: sql.InternalExecutor{ LeaseManager: s.leaseMgr, }, LogRangeEvents: true, AllocatorOptions: storage.AllocatorOptions{ AllowRebalance: true, Mode: s.ctx.BalanceMode, }, } s.recorder = status.NewMetricsRecorder(s.clock) s.recorder.AddNodeRegistry("sql.%s", sqlRegistry) s.recorder.AddNodeRegistry("txn.%s", txnRegistry) s.node = NewNode(nCtx, s.recorder, s.stopper, txnMetrics) s.admin = newAdminServer(s.db, s.stopper, s.sqlExecutor) s.tsDB = ts.NewDB(s.db) s.tsServer = ts.NewServer(s.tsDB) s.status = newStatusServer(s.db, s.gossip, s.recorder, s.ctx) return s, nil }
// TestMultiRangeScanDeleteRange tests that commands which access multiple // ranges are carried out properly. func TestMultiRangeScanDeleteRange(t *testing.T) { defer leaktest.AfterTest(t)() s := StartTestServer(t) defer s.Stop() retryOpts := kv.GetDefaultDistSenderRetryOptions() retryOpts.Closer = s.stopper.ShouldDrain() ds := kv.NewDistSender(&kv.DistSenderContext{ Clock: s.Clock(), RPCContext: s.RPCContext(), RPCRetryOptions: &retryOpts, }, s.Gossip()) tds := kv.NewTxnCoordSender(ds, s.Clock(), testContext.Linearizable, tracing.NewTracer(), s.stopper, kv.NewTxnMetrics(metric.NewRegistry())) if err := s.node.ctx.DB.AdminSplit("m"); err != nil { t.Fatal(err) } writes := []roachpb.Key{roachpb.Key("a"), roachpb.Key("z")} get := &roachpb.GetRequest{ Span: roachpb.Span{Key: writes[0]}, } get.EndKey = writes[len(writes)-1] if _, err := client.SendWrapped(tds, nil, get); err == nil { t.Errorf("able to call Get with a key range: %v", get) } var delTS roachpb.Timestamp for i, k := range writes { put := roachpb.NewPut(k, roachpb.MakeValueFromBytes(k)) reply, err := client.SendWrapped(tds, nil, put) if err != nil { t.Fatal(err) } scan := roachpb.NewScan(writes[0], writes[len(writes)-1].Next(), 0).(*roachpb.ScanRequest) // The Put ts may have been pushed by tsCache, // so make sure we see their values in our Scan. delTS = reply.(*roachpb.PutResponse).Timestamp reply, err = client.SendWrappedWith(tds, nil, roachpb.Header{Timestamp: delTS}, scan) if err != nil { t.Fatal(err) } sr := reply.(*roachpb.ScanResponse) if sr.Txn != nil { // This was the other way around at some point in the past. // Same below for Delete, etc. t.Errorf("expected no transaction in response header") } if rows := sr.Rows; len(rows) != i+1 { t.Fatalf("expected %d rows, but got %d", i+1, len(rows)) } } del := &roachpb.DeleteRangeRequest{ Span: roachpb.Span{ Key: writes[0], EndKey: roachpb.Key(writes[len(writes)-1]).Next(), }, ReturnKeys: true, } reply, err := client.SendWrappedWith(tds, nil, roachpb.Header{Timestamp: delTS}, del) if err != nil { t.Fatal(err) } dr := reply.(*roachpb.DeleteRangeResponse) if dr.Txn != nil { t.Errorf("expected no transaction in response header") } if !reflect.DeepEqual(dr.Keys, writes) { t.Errorf("expected %d keys to be deleted, but got %d instead", writes, dr.Keys) } scan := roachpb.NewScan(writes[0], writes[len(writes)-1].Next(), 0).(*roachpb.ScanRequest) txn := &roachpb.Transaction{Name: "MyTxn"} reply, err = client.SendWrappedWith(tds, nil, roachpb.Header{Txn: txn}, scan) if err != nil { t.Fatal(err) } sr := reply.(*roachpb.ScanResponse) if txn := sr.Txn; txn == nil || txn.Name != "MyTxn" { t.Errorf("wanted Txn to persist, but it changed to %v", txn) } if rows := sr.Rows; len(rows) > 0 { t.Fatalf("scan after delete returned rows: %v", rows) } }
// NewServer creates a Server from a server.Context. func NewServer(ctx Context, stopper *stop.Stopper) (*Server, error) { if _, err := net.ResolveTCPAddr("tcp", ctx.Addr); err != nil { return nil, errors.Errorf("unable to resolve RPC address %q: %v", ctx.Addr, err) } if ctx.Insecure { log.Warning(context.TODO(), "running in insecure mode, this is strongly discouraged. See --insecure.") } // Try loading the TLS configs before anything else. if _, err := ctx.GetServerTLSConfig(); err != nil { return nil, err } if _, err := ctx.GetClientTLSConfig(); err != nil { return nil, err } s := &Server{ Tracer: tracing.NewTracer(), ctx: ctx, mux: http.NewServeMux(), clock: hlc.NewClock(hlc.UnixNano), stopper: stopper, } s.clock.SetMaxOffset(ctx.MaxOffset) s.rpcContext = rpc.NewContext(ctx.Context, s.clock, s.stopper) s.rpcContext.HeartbeatCB = func() { if err := s.rpcContext.RemoteClocks.VerifyClockOffset(); err != nil { log.Fatal(context.TODO(), err) } } s.grpc = rpc.NewServer(s.rpcContext) s.registry = metric.NewRegistry() s.gossip = gossip.New(s.rpcContext, s.grpc, s.ctx.GossipBootstrapResolvers, s.stopper, s.registry) s.storePool = storage.NewStorePool( s.gossip, s.clock, s.rpcContext, ctx.ReservationsEnabled, ctx.TimeUntilStoreDead, s.stopper, ) // A custom RetryOptions is created which uses stopper.ShouldQuiesce() as // the Closer. This prevents infinite retry loops from occurring during // graceful server shutdown // // Such a loop loop occurs with the DistSender attempts a connection to the // local server during shutdown, and receives an internal server error (HTTP // Code 5xx). This is the correct error for a server to return when it is // shutting down, and is normally retryable in a cluster environment. // However, on a single-node setup (such as a test), retries will never // succeed because the only server has been shut down; thus, thus the // DistSender needs to know that it should not retry in this situation. retryOpts := base.DefaultRetryOptions() retryOpts.Closer = s.stopper.ShouldQuiesce() s.distSender = kv.NewDistSender(&kv.DistSenderContext{ Clock: s.clock, RPCContext: s.rpcContext, RPCRetryOptions: &retryOpts, }, s.gossip) txnMetrics := kv.NewTxnMetrics(s.registry) sender := kv.NewTxnCoordSender(s.distSender, s.clock, ctx.Linearizable, s.Tracer, s.stopper, txnMetrics) s.db = client.NewDB(sender) s.raftTransport = storage.NewRaftTransport(storage.GossipAddressResolver(s.gossip), s.grpc, s.rpcContext) s.kvDB = kv.NewDBServer(s.ctx.Context, sender, s.stopper) roachpb.RegisterExternalServer(s.grpc, s.kvDB) // Set up Lease Manager var lmKnobs sql.LeaseManagerTestingKnobs if ctx.TestingKnobs.SQLLeaseManager != nil { lmKnobs = *ctx.TestingKnobs.SQLLeaseManager.(*sql.LeaseManagerTestingKnobs) } s.leaseMgr = sql.NewLeaseManager(0, *s.db, s.clock, lmKnobs, s.stopper) s.leaseMgr.RefreshLeases(s.stopper, s.db, s.gossip) // Set up the DistSQL server distSQLCtx := distsql.ServerContext{ Context: context.Background(), DB: s.db, RPCContext: s.rpcContext, } s.distSQLServer = distsql.NewServer(distSQLCtx) distsql.RegisterDistSQLServer(s.grpc, s.distSQLServer) // Set up Executor eCtx := sql.ExecutorContext{ Context: context.Background(), DB: s.db, Gossip: s.gossip, LeaseManager: s.leaseMgr, Clock: s.clock, DistSQLSrv: s.distSQLServer, } if ctx.TestingKnobs.SQLExecutor != nil { eCtx.TestingKnobs = ctx.TestingKnobs.SQLExecutor.(*sql.ExecutorTestingKnobs) } else { eCtx.TestingKnobs = &sql.ExecutorTestingKnobs{} } s.sqlExecutor = sql.NewExecutor(eCtx, s.stopper, s.registry) s.pgServer = pgwire.MakeServer(s.ctx.Context, s.sqlExecutor, s.registry) // TODO(bdarnell): make StoreConfig configurable. nCtx := storage.StoreContext{ Clock: s.clock, DB: s.db, Gossip: s.gossip, Transport: s.raftTransport, RaftTickInterval: s.ctx.RaftTickInterval, ScanInterval: s.ctx.ScanInterval, ScanMaxIdleTime: s.ctx.ScanMaxIdleTime, ConsistencyCheckInterval: s.ctx.ConsistencyCheckInterval, ConsistencyCheckPanicOnFailure: s.ctx.ConsistencyCheckPanicOnFailure, Tracer: s.Tracer, StorePool: s.storePool, SQLExecutor: sql.InternalExecutor{ LeaseManager: s.leaseMgr, }, LogRangeEvents: true, AllocatorOptions: storage.AllocatorOptions{ AllowRebalance: true, }, } if ctx.TestingKnobs.Store != nil { nCtx.TestingKnobs = *ctx.TestingKnobs.Store.(*storage.StoreTestingKnobs) } s.recorder = status.NewMetricsRecorder(s.clock) s.rpcContext.RemoteClocks.RegisterMetrics(s.registry) s.runtime = status.MakeRuntimeStatSampler(s.clock, s.registry) s.node = NewNode(nCtx, s.recorder, s.registry, s.stopper, txnMetrics, sql.MakeEventLogger(s.leaseMgr)) roachpb.RegisterInternalServer(s.grpc, s.node) roachpb.RegisterInternalStoresServer(s.grpc, s.node.InternalStoresServer) s.tsDB = ts.NewDB(s.db) s.tsServer = ts.MakeServer(s.tsDB) s.admin = makeAdminServer(s) s.status = newStatusServer(s.db, s.gossip, s.recorder, s.ctx.Context, s.rpcContext, s.node.stores) for _, gw := range []grpcGatewayServer{&s.admin, s.status, &s.tsServer} { gw.RegisterService(s.grpc) } return s, nil }