// deleteRow adds to the batch the kv operations necessary to delete a table row // with the given values. func (rd *rowDeleter) deleteRow(ctx context.Context, b *client.Batch, values []parser.Datum) error { if err := rd.fks.checkAll(values); err != nil { return err } primaryIndexKey, secondaryIndexEntries, err := rd.helper.encodeIndexes(rd.fetchColIDtoRowIndex, values) if err != nil { return err } for _, secondaryIndexEntry := range secondaryIndexEntries { if log.V(2) { log.Infof(ctx, "Del %s", secondaryIndexEntry.Key) } b.Del(secondaryIndexEntry.Key) } // Delete the row. rd.startKey = roachpb.Key(primaryIndexKey) rd.endKey = roachpb.Key(encoding.EncodeNotNullDescending(primaryIndexKey)) if log.V(2) { log.Infof(ctx, "DelRange %s - %s", rd.startKey, rd.endKey) } b.DelRange(&rd.startKey, &rd.endKey, false) rd.startKey, rd.endKey = nil, nil return nil }
// deleteIndexRow adds to the batch the kv operations necessary to delete a // table row from the given index. func (rd *rowDeleter) deleteIndexRow( ctx context.Context, b *client.Batch, idx *sqlbase.IndexDescriptor, values []parser.Datum, ) error { if err := rd.fks.checkAll(values); err != nil { return err } secondaryIndexEntry, err := sqlbase.EncodeSecondaryIndex( rd.helper.tableDesc, idx, rd.fetchColIDtoRowIndex, values) if err != nil { return err } if log.V(2) { log.Infof(ctx, "Del %s", secondaryIndexEntry.Key) } b.Del(secondaryIndexEntry.Key) return nil }
func delMeta(b *client.Batch, key roachpb.Key, desc *roachpb.RangeDescriptor) { b.Del(key) }
// updateRow adds to the batch the kv operations necessary to update a table row // with the given values. // // The row corresponding to oldValues is updated with the ones in updateValues. // Note that updateValues only contains the ones that are changing. // // The return value is only good until the next call to UpdateRow. func (ru *rowUpdater) updateRow( ctx context.Context, b *client.Batch, oldValues []parser.Datum, updateValues []parser.Datum, ) ([]parser.Datum, error) { if len(oldValues) != len(ru.fetchCols) { return nil, errors.Errorf("got %d values but expected %d", len(oldValues), len(ru.fetchCols)) } if len(updateValues) != len(ru.updateCols) { return nil, errors.Errorf("got %d values but expected %d", len(updateValues), len(ru.updateCols)) } primaryIndexKey, secondaryIndexEntries, err := ru.helper.encodeIndexes(ru.fetchColIDtoRowIndex, oldValues) if err != nil { return nil, err } // The secondary index entries returned by rowHelper.encodeIndexes are only // valid until the next call to encodeIndexes. We need to copy them so that // we can compare against the new secondary index entries. secondaryIndexEntries = append(ru.indexEntriesBuf[:0], secondaryIndexEntries...) ru.indexEntriesBuf = secondaryIndexEntries // Check that the new value types match the column types. This needs to // happen before index encoding because certain datum types (i.e. tuple) // cannot be used as index values. for i, val := range updateValues { if ru.marshalled[i], err = sqlbase.MarshalColumnValue(ru.updateCols[i], val); err != nil { return nil, err } } // Update the row values. copy(ru.newValues, oldValues) for i, updateCol := range ru.updateCols { ru.newValues[ru.fetchColIDtoRowIndex[updateCol.ID]] = updateValues[i] } rowPrimaryKeyChanged := false var newSecondaryIndexEntries []sqlbase.IndexEntry if ru.primaryKeyColChange { var newPrimaryIndexKey []byte newPrimaryIndexKey, newSecondaryIndexEntries, err = ru.helper.encodeIndexes(ru.fetchColIDtoRowIndex, ru.newValues) if err != nil { return nil, err } rowPrimaryKeyChanged = !bytes.Equal(primaryIndexKey, newPrimaryIndexKey) } else { newSecondaryIndexEntries, err = ru.helper.encodeSecondaryIndexes(ru.fetchColIDtoRowIndex, ru.newValues) if err != nil { return nil, err } } if rowPrimaryKeyChanged { if err := ru.fks.checkIdx(ru.helper.tableDesc.PrimaryIndex.ID, oldValues, ru.newValues); err != nil { return nil, err } for i := range newSecondaryIndexEntries { if !bytes.Equal(newSecondaryIndexEntries[i].Key, secondaryIndexEntries[i].Key) { if err := ru.fks.checkIdx(ru.helper.indexes[i].ID, oldValues, ru.newValues); err != nil { return nil, err } } } if err := ru.rd.deleteRow(ctx, b, oldValues); err != nil { return nil, err } if err := ru.ri.InsertRow(ctx, b, ru.newValues, false); err != nil { return nil, err } return ru.newValues, nil } // Add the new values. // TODO(dan): This has gotten very similar to the loop in insertRow, see if // they can be DRY'd. Ideally, this would also work for // truncateAndBackfillColumnsChunk, which is currently abusing rowUdpdater. for i, family := range ru.helper.tableDesc.Families { update := false for _, colID := range family.ColumnIDs { if _, ok := ru.updateColIDtoRowIndex[colID]; ok { update = true break } } if !update { continue } if i > 0 { // HACK: MakeFamilyKey appends to its argument, so on every loop iteration // after the first, trim primaryIndexKey so nothing gets overwritten. // TODO(dan): Instead of this, use something like engine.ChunkAllocator. primaryIndexKey = primaryIndexKey[:len(primaryIndexKey):len(primaryIndexKey)] } if len(family.ColumnIDs) == 1 && family.ColumnIDs[0] == family.DefaultColumnID { // Storage optimization to store DefaultColumnID directly as a value. Also // backwards compatible with the original BaseFormatVersion. idx, ok := ru.updateColIDtoRowIndex[family.DefaultColumnID] if !ok { continue } ru.key = keys.MakeFamilyKey(primaryIndexKey, uint32(family.ID)) if log.V(2) { log.Infof(ctx, "Put %s -> %v", ru.key, ru.marshalled[idx].PrettyPrint()) } b.Put(&ru.key, &ru.marshalled[idx]) ru.key = nil continue } ru.key = keys.MakeFamilyKey(primaryIndexKey, uint32(family.ID)) ru.valueBuf = ru.valueBuf[:0] var lastColID sqlbase.ColumnID familySortedColumnIDs, ok := ru.helper.sortedColumnFamily(family.ID) if !ok { panic("invalid family sorted column id map") } for _, colID := range familySortedColumnIDs { if ru.helper.columnInPK(colID) { if family.ID != 0 { return nil, errors.Errorf("primary index column %d must be in family 0, was %d", colID, family.ID) } // Skip primary key columns as their values are encoded in the key of // each family. Family 0 is guaranteed to exist and acts as a sentinel. continue } idx, ok := ru.fetchColIDtoRowIndex[colID] if !ok { return nil, errors.Errorf("column %d was expected to be fetched, but wasn't", colID) } col := ru.fetchCols[idx] if ru.newValues[idx].Compare(parser.DNull) == 0 { continue } if lastColID > col.ID { panic(fmt.Errorf("cannot write column id %d after %d", col.ID, lastColID)) } colIDDiff := col.ID - lastColID lastColID = col.ID ru.valueBuf, err = sqlbase.EncodeTableValue(ru.valueBuf, colIDDiff, ru.newValues[idx]) if err != nil { return nil, err } } if family.ID != 0 && len(ru.valueBuf) == 0 { // The family might have already existed but every column in it is being // set to NULL, so delete it. if log.V(2) { log.Infof(ctx, "Del %s", ru.key) } b.Del(&ru.key) } else { ru.value.SetTuple(ru.valueBuf) if log.V(2) { log.Infof(ctx, "Put %s -> %v", ru.key, ru.value.PrettyPrint()) } b.Put(&ru.key, &ru.value) } ru.key = nil } // Update secondary indexes. for i, newSecondaryIndexEntry := range newSecondaryIndexEntries { secondaryIndexEntry := secondaryIndexEntries[i] secondaryKeyChanged := !bytes.Equal(newSecondaryIndexEntry.Key, secondaryIndexEntry.Key) if secondaryKeyChanged { if err := ru.fks.checkIdx(ru.helper.indexes[i].ID, oldValues, ru.newValues); err != nil { return nil, err } if log.V(2) { log.Infof(ctx, "Del %s", secondaryIndexEntry.Key) } b.Del(secondaryIndexEntry.Key) // Do not update Indexes in the DELETE_ONLY state. if _, ok := ru.deleteOnlyIndex[i]; !ok { if log.V(2) { log.Infof(ctx, "CPut %s -> %v", newSecondaryIndexEntry.Key, newSecondaryIndexEntry.Value.PrettyPrint()) } b.CPut(newSecondaryIndexEntry.Key, &newSecondaryIndexEntry.Value, nil) } } } return ru.newValues, nil }