示例#1
0
// TestClientDisconnectRedundant verifies that the gossip server
// will drop an outgoing client connection that is already an
// inbound client connection of another node.
func TestClientDisconnectRedundant(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()
	local := startGossip(1, stopper, t, metric.NewRegistry())
	remote := startGossip(2, stopper, t, metric.NewRegistry())
	// startClient requires locks are held, so acquire here.
	local.mu.Lock()
	remote.mu.Lock()
	rAddr := remote.mu.is.NodeAddr
	lAddr := local.mu.is.NodeAddr
	local.startClient(&rAddr, remote.NodeID.Get())
	remote.startClient(&lAddr, local.NodeID.Get())
	local.mu.Unlock()
	remote.mu.Unlock()
	local.manage()
	remote.manage()
	util.SucceedsSoon(t, func() error {
		// Check which of the clients is connected to the other.
		ok1 := local.findClient(func(c *client) bool { return c.addr.String() == rAddr.String() }) != nil
		ok2 := remote.findClient(func(c *client) bool { return c.addr.String() == lAddr.String() }) != nil
		// We expect node 2 to disconnect; if both are still connected,
		// it's possible that node 1 gossiped before node 2 connected, in
		// which case we have to gossip from node 1 to trigger the
		// disconnect redundant client code.
		if ok1 && ok2 {
			if err := local.AddInfo("local-key", nil, time.Second); err != nil {
				t.Fatal(err)
			}
		} else if ok1 && !ok2 && verifyServerMaps(local, 0) && verifyServerMaps(remote, 1) {
			return nil
		}
		return errors.New("local client to remote not yet closed as redundant")
	})
}
示例#2
0
func TestGossipRaceLogStatus(t *testing.T) {
	defer leaktest.AfterTest(t)()

	stopper := stop.NewStopper()
	defer stopper.Stop()
	local := startGossip(1, stopper, t, metric.NewRegistry())

	local.mu.Lock()
	peer := startGossip(2, stopper, t, metric.NewRegistry())
	local.startClient(&peer.mu.is.NodeAddr)
	local.mu.Unlock()

	// Race gossiping against LogStatus.
	gun := make(chan struct{})
	for i := uint8(0); i < 10; i++ {
		go func() {
			<-gun
			local.LogStatus()
			gun <- struct{}{}
		}()
		gun <- struct{}{}
		if err := local.AddInfo(
			strconv.FormatUint(uint64(i), 10),
			[]byte{i},
			time.Hour,
		); err != nil {
			t.Fatal(err)
		}
		<-gun
	}
	close(gun)
}
示例#3
0
// TestClientGossip verifies a client can gossip a delta to the server.
func TestClientGossip(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	local := startGossip(1, stopper, t, metric.NewRegistry())
	remote := startGossip(2, stopper, t, metric.NewRegistry())
	disconnected := make(chan *client, 1)
	c := newClient(log.AmbientContext{}, remote.GetNodeAddr(), makeMetrics())

	defer func() {
		stopper.Stop()
		if c != <-disconnected {
			t.Errorf("expected client disconnect after remote close")
		}
	}()

	if err := local.AddInfo("local-key", nil, time.Hour); err != nil {
		t.Fatal(err)
	}
	if err := remote.AddInfo("remote-key", nil, time.Hour); err != nil {
		t.Fatal(err)
	}

	gossipSucceedsSoon(t, stopper, disconnected, map[*client]*Gossip{
		c: local,
	}, func() error {
		if _, err := remote.GetInfo("local-key"); err != nil {
			return err
		}
		if _, err := local.GetInfo("remote-key"); err != nil {
			return err
		}
		return nil
	})
}
示例#4
0
// createTestNode creates an rpc server using the specified address,
// gossip instance, KV database and a node using the specified slice
// of engines. The server, clock and node are returned. If gossipBS is
// not nil, the gossip bootstrap address is set to gossipBS.
func createTestNode(
	addr net.Addr, engines []engine.Engine, gossipBS net.Addr, t *testing.T,
) (*grpc.Server, net.Addr, *hlc.Clock, *Node, *stop.Stopper) {
	cfg := storage.StoreConfig{}

	stopper := stop.NewStopper()
	cfg.Clock = hlc.NewClock(hlc.UnixNano)
	nodeRPCContext := rpc.NewContext(log.AmbientContext{}, nodeTestBaseContext, cfg.Clock, stopper)
	cfg.ScanInterval = 10 * time.Hour
	cfg.ConsistencyCheckInterval = 10 * time.Hour
	grpcServer := rpc.NewServer(nodeRPCContext)
	serverCfg := makeTestConfig()
	cfg.Gossip = gossip.NewTest(
		0,
		nodeRPCContext,
		grpcServer,
		serverCfg.GossipBootstrapResolvers,
		stopper,
		metric.NewRegistry(),
	)
	ln, err := netutil.ListenAndServeGRPC(stopper, grpcServer, addr)
	if err != nil {
		t.Fatal(err)
	}
	if gossipBS != nil {
		// Handle possibility of a :0 port specification.
		if gossipBS.Network() == addr.Network() && gossipBS.String() == addr.String() {
			gossipBS = ln.Addr()
		}
		r, err := resolver.NewResolverFromAddress(gossipBS)
		if err != nil {
			t.Fatalf("bad gossip address %s: %s", gossipBS, err)
		}
		cfg.Gossip.SetResolvers([]resolver.Resolver{r})
		cfg.Gossip.Start(ln.Addr())
	}
	retryOpts := base.DefaultRetryOptions()
	retryOpts.Closer = stopper.ShouldQuiesce()
	distSender := kv.NewDistSender(kv.DistSenderConfig{
		Clock:           cfg.Clock,
		RPCContext:      nodeRPCContext,
		RPCRetryOptions: &retryOpts,
	}, cfg.Gossip)
	cfg.AmbientCtx.Tracer = tracing.NewTracer()
	sender := kv.NewTxnCoordSender(
		cfg.AmbientCtx,
		distSender,
		cfg.Clock,
		false,
		stopper,
		kv.MakeTxnMetrics(metric.TestSampleInterval),
	)
	cfg.DB = client.NewDB(sender)
	cfg.Transport = storage.NewDummyRaftTransport()
	cfg.MetricsSampleInterval = metric.TestSampleInterval
	node := NewNode(cfg, status.NewMetricsRecorder(cfg.Clock), metric.NewRegistry(), stopper,
		kv.MakeTxnMetrics(metric.TestSampleInterval), sql.MakeEventLogger(nil))
	roachpb.RegisterInternalServer(grpcServer, node)
	return grpcServer, ln.Addr(), cfg.Clock, node, stopper
}
示例#5
0
// TestClientDisallowMultipleConns verifies that the server disallows
// multiple connections from the same client node ID.
func TestClientDisallowMultipleConns(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()
	local := startGossip(1, stopper, t, metric.NewRegistry())
	remote := startGossip(2, stopper, t, metric.NewRegistry())
	local.mu.Lock()
	remote.mu.Lock()
	rAddr := remote.mu.is.NodeAddr
	// Start two clients from local to remote. RPC client cache is
	// disabled via the context, so we'll start two different outgoing
	// connections.
	local.startClient(&rAddr, remote.NodeID.Get())
	local.startClient(&rAddr, remote.NodeID.Get())
	local.mu.Unlock()
	remote.mu.Unlock()
	local.manage()
	remote.manage()
	util.SucceedsSoon(t, func() error {
		// Verify that the remote server has only a single incoming
		// connection and the local server has only a single outgoing
		// connection.
		local.mu.Lock()
		remote.mu.Lock()
		outgoing := local.outgoing.len()
		incoming := remote.mu.incoming.len()
		local.mu.Unlock()
		remote.mu.Unlock()
		if outgoing == 1 && incoming == 1 && verifyServerMaps(local, 0) && verifyServerMaps(remote, 1) {
			return nil
		}
		return errors.Errorf("incorrect number of incoming (%d) or outgoing (%d) connections", incoming, outgoing)
	})
}
示例#6
0
// TestClientGossipMetrics verifies a that gossip stats are generated.
func TestClientGossipMetrics(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()
	local := startGossip(1, stopper, t, metric.NewRegistry())
	remote := startGossip(2, stopper, t, metric.NewRegistry())

	if err := local.AddInfo("local-key", nil, time.Hour); err != nil {
		t.Fatal(err)
	}
	if err := remote.AddInfo("remote-key", nil, time.Hour); err != nil {
		t.Fatal(err)
	}

	gossipSucceedsSoon(
		t, stopper, make(chan *client, 2),
		map[*client]*Gossip{
			newClient(log.AmbientContext{}, local.GetNodeAddr(), remote.nodeMetrics): remote,
		},
		func() error {
			// Infos/Bytes Sent/Received should not be zero.
			for i, s := range []*server{local.server, remote.server} {
				for _, counter := range []*metric.Counter{
					s.nodeMetrics.InfosSent,
					s.nodeMetrics.InfosReceived,
					s.nodeMetrics.BytesSent,
					s.nodeMetrics.BytesReceived,
				} {
					if count := counter.Count(); count <= 0 {
						return errors.Errorf("%d: expected metrics counter %q > 0; = %d", i, counter.GetName(), count)
					}
				}
			}

			// Since there are two gossip nodes, there should be exactly one incoming
			// or outgoing connection due to gossip's connection de-duplication.
			for i, g := range []*Gossip{local, remote} {
				g.mu.Lock()
				defer g.mu.Unlock()

				count := int64(0)
				for _, gauge := range []*metric.Gauge{g.mu.incoming.gauge, g.outgoing.gauge} {
					if gauge == nil {
						return errors.Errorf("%d: missing gauge", i)
					}
					count += gauge.Value()
				}
				const expected = 1
				if count != expected {
					return errors.Errorf("%d: expected metrics incoming + outgoing connection count == %d; = %d", i, expected, count)
				}
			}
			return nil
		})
}
示例#7
0
// startFakeServerGossips creates local gossip instances and remote
// faked gossip instance. The remote gossip instance launches its
// faked gossip service just for check the client message.
func startFakeServerGossips(
	t *testing.T, localNodeID roachpb.NodeID,
) (*Gossip, *fakeGossipServer, *stop.Stopper) {
	stopper := stop.NewStopper()
	lRPCContext := rpc.NewContext(log.AmbientContext{}, &base.Config{Insecure: true}, nil, stopper)

	lserver := rpc.NewServer(lRPCContext)
	local := NewTest(localNodeID, lRPCContext, lserver, nil, stopper, metric.NewRegistry())
	lln, err := netutil.ListenAndServeGRPC(stopper, lserver, util.IsolatedTestAddr)
	if err != nil {
		t.Fatal(err)
	}
	local.start(lln.Addr())

	rRPCContext := rpc.NewContext(log.AmbientContext{}, &base.Config{Insecure: true}, nil, stopper)

	rserver := rpc.NewServer(rRPCContext)
	rln, err := netutil.ListenAndServeGRPC(stopper, rserver, util.IsolatedTestAddr)
	if err != nil {
		t.Fatal(err)
	}
	remote := newFakeGossipServer(rserver, stopper)
	addr := rln.Addr()
	remote.nodeAddr = util.MakeUnresolvedAddr(addr.Network(), addr.String())
	return local, remote, stopper
}
示例#8
0
// TestClientForwardUnresolved verifies that a client does not resolve a forward
// address prematurely.
func TestClientForwardUnresolved(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()
	const nodeID = 1
	local := startGossip(nodeID, stopper, t, metric.NewRegistry())
	addr := local.GetNodeAddr()

	client := newClient(log.AmbientContext{}, addr, makeMetrics()) // never started

	newAddr := util.UnresolvedAddr{
		NetworkField: "tcp",
		AddressField: "localhost:2345",
	}
	reply := &Response{
		NodeID:          nodeID,
		Addr:            *addr,
		AlternateNodeID: nodeID + 1,
		AlternateAddr:   &newAddr,
	}
	if err := client.handleResponse(
		context.TODO(), local, reply,
	); !testutils.IsError(err, "received forward") {
		t.Fatal(err)
	}
	if !proto.Equal(client.forwardAddr, &newAddr) {
		t.Fatalf("unexpected forward address %v, expected %v", client.forwardAddr, &newAddr)
	}
}
示例#9
0
// Start starts the test cluster by bootstrapping an in-memory store
// (defaults to maximum of 50M). The server is started, launching the
// node RPC server and all HTTP endpoints. Use the value of
// TestServer.Addr after Start() for client connections. Use Stop()
// to shutdown the server after the test completes.
func (ltc *LocalTestCluster) Start(t util.Tester, baseCtx *base.Config, initSender InitSenderFn) {
	ambient := log.AmbientContext{Tracer: tracing.NewTracer()}
	nc := &base.NodeIDContainer{}
	ambient.AddLogTag("n", nc)

	nodeID := roachpb.NodeID(1)
	nodeDesc := &roachpb.NodeDescriptor{NodeID: nodeID}

	ltc.tester = t
	ltc.Manual = hlc.NewManualClock(0)
	ltc.Clock = hlc.NewClock(ltc.Manual.UnixNano)
	ltc.Stopper = stop.NewStopper()
	rpcContext := rpc.NewContext(ambient, baseCtx, ltc.Clock, ltc.Stopper)
	server := rpc.NewServer(rpcContext) // never started
	ltc.Gossip = gossip.New(ambient, nc, rpcContext, server, nil, ltc.Stopper, metric.NewRegistry())
	ltc.Eng = engine.NewInMem(roachpb.Attributes{}, 50<<20)
	ltc.Stopper.AddCloser(ltc.Eng)

	ltc.Stores = storage.NewStores(ambient, ltc.Clock)

	ltc.Sender = initSender(nodeDesc, ambient.Tracer, ltc.Clock, ltc.Latency, ltc.Stores, ltc.Stopper,
		ltc.Gossip)
	if ltc.DBContext == nil {
		dbCtx := client.DefaultDBContext()
		ltc.DBContext = &dbCtx
	}
	ltc.DB = client.NewDBWithContext(ltc.Sender, *ltc.DBContext)
	transport := storage.NewDummyRaftTransport()
	cfg := storage.TestStoreConfig()
	if ltc.RangeRetryOptions != nil {
		cfg.RangeRetryOptions = *ltc.RangeRetryOptions
	}
	cfg.AmbientCtx = ambient
	cfg.Clock = ltc.Clock
	cfg.DB = ltc.DB
	cfg.Gossip = ltc.Gossip
	cfg.Transport = transport
	cfg.MetricsSampleInterval = metric.TestSampleInterval
	ltc.Store = storage.NewStore(cfg, ltc.Eng, nodeDesc)
	if err := ltc.Store.Bootstrap(roachpb.StoreIdent{NodeID: nodeID, StoreID: 1}); err != nil {
		t.Fatalf("unable to start local test cluster: %s", err)
	}
	ltc.Stores.AddStore(ltc.Store)
	if err := ltc.Store.BootstrapRange(nil); err != nil {
		t.Fatalf("unable to start local test cluster: %s", err)
	}
	if err := ltc.Store.Start(context.Background(), ltc.Stopper); err != nil {
		t.Fatalf("unable to start local test cluster: %s", err)
	}
	nc.Set(context.TODO(), nodeDesc.NodeID)
	if err := ltc.Gossip.SetNodeDescriptor(nodeDesc); err != nil {
		t.Fatalf("unable to set node descriptor: %s", err)
	}
}
示例#10
0
// TestGossipCullNetwork verifies that a client will be culled from
// the network periodically (at cullInterval duration intervals).
func TestGossipCullNetwork(t *testing.T) {
	defer leaktest.AfterTest(t)()

	stopper := stop.NewStopper()
	defer stopper.Stop()
	local := startGossip(1, stopper, t, metric.NewRegistry())
	local.SetCullInterval(5 * time.Millisecond)

	local.mu.Lock()
	for i := 0; i < minPeers; i++ {
		peer := startGossip(roachpb.NodeID(i+2), stopper, t, metric.NewRegistry())
		local.startClient(peer.GetNodeAddr())
	}
	local.mu.Unlock()

	const slowGossipDuration = time.Minute

	if err := util.RetryForDuration(slowGossipDuration, func() error {
		if peers := len(local.Outgoing()); peers != minPeers {
			return errors.Errorf("%d of %d peers connected", peers, minPeers)
		}
		return nil
	}); err != nil {
		t.Fatalf("condition failed to evaluate within %s: %s", slowGossipDuration, err)
	}

	local.manage()

	if err := util.RetryForDuration(slowGossipDuration, func() error {
		// Verify that a client is closed within the cull interval.
		if peers := len(local.Outgoing()); peers != minPeers-1 {
			return errors.Errorf("%d of %d peers connected", peers, minPeers-1)
		}
		return nil
	}); err != nil {
		t.Fatalf("condition failed to evaluate within %s: %s", slowGossipDuration, err)
	}
}
示例#11
0
// TestClientRetryBootstrap verifies that an initial failure to connect
// to a bootstrap host doesn't stall the bootstrapping process in the
// absence of any additional activity. This can happen during acceptance
// tests if the DNS can't lookup hostnames when gossip is started.
func TestClientRetryBootstrap(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()
	local := startGossip(1, stopper, t, metric.NewRegistry())
	remote := startGossip(2, stopper, t, metric.NewRegistry())

	if err := local.AddInfo("local-key", []byte("hello"), 0*time.Second); err != nil {
		t.Fatal(err)
	}

	local.SetBootstrapInterval(10 * time.Millisecond)
	local.SetResolvers([]resolver.Resolver{
		&testResolver{addr: remote.GetNodeAddr().String(), numFails: 3, numSuccesses: 1},
	})
	local.bootstrap()
	local.manage()

	util.SucceedsSoon(t, func() error {
		_, err := remote.GetInfo("local-key")
		return err
	})
}
示例#12
0
func newRaftTransportTestContext(t testing.TB) *raftTransportTestContext {
	rttc := &raftTransportTestContext{
		t:          t,
		stopper:    stop.NewStopper(),
		transports: map[roachpb.NodeID]*storage.RaftTransport{},
	}
	rttc.nodeRPCContext = rpc.NewContext(
		log.AmbientContext{}, testutils.NewNodeTestBaseContext(), nil, rttc.stopper,
	)
	server := rpc.NewServer(rttc.nodeRPCContext) // never started
	rttc.gossip = gossip.NewTest(
		1, rttc.nodeRPCContext, server, nil, rttc.stopper, metric.NewRegistry(),
	)
	return rttc
}
示例#13
0
// TestClientRegisterInitNodeID verifies two client's gossip request with NodeID 0.
func TestClientRegisterWithInitNodeID(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()

	// Create three gossip nodes, and connect to the first with NodeID 0.
	var g []*Gossip
	var gossipAddr string
	for i := 0; i < 3; i++ {
		RPCContext := rpc.NewContext(log.AmbientContext{}, &base.Config{Insecure: true}, nil, stopper)

		server := rpc.NewServer(RPCContext)
		ln, err := netutil.ListenAndServeGRPC(stopper, server, util.IsolatedTestAddr)
		if err != nil {
			t.Fatal(err)
		}

		// Connect to the first gossip node.
		if gossipAddr == "" {
			gossipAddr = ln.Addr().String()
		}

		var resolvers []resolver.Resolver
		resolver, err := resolver.NewResolver(gossipAddr)
		if err != nil {
			t.Fatal(err)
		}
		resolvers = append(resolvers, resolver)
		// node ID must be non-zero
		gnode := NewTest(
			roachpb.NodeID(i+1), RPCContext, server, resolvers, stopper, metric.NewRegistry(),
		)
		g = append(g, gnode)
		gnode.Start(ln.Addr())
	}

	util.SucceedsSoon(t, func() error {
		// The first gossip node should have two gossip client address
		// in nodeMap if these three gossip nodes registered success.
		g[0].mu.Lock()
		defer g[0].mu.Unlock()
		if a, e := len(g[0].mu.nodeMap), 2; a != e {
			return errors.Errorf("expected %s to contain %d nodes, got %d", g[0].mu.nodeMap, e, a)
		}
		return nil
	})
}
示例#14
0
// MustGetSQLNetworkCounter implements TestServerInterface.
func (ts *TestServer) MustGetSQLNetworkCounter(name string) int64 {
	var c int64
	var found bool

	reg := metric.NewRegistry()
	reg.AddMetricStruct(ts.pgServer.Metrics())
	reg.Each(func(n string, v interface{}) {
		if name == n {
			c = v.(*metric.Counter).Count()
			found = true
		}
	})
	if !found {
		panic(fmt.Sprintf("couldn't find metric %s", name))
	}
	return c
}
示例#15
0
// TestGossipInfoStore verifies operation of gossip instance infostore.
func TestGossipInfoStore(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()
	rpcContext := newInsecureRPCContext(stopper)
	g := NewTest(1, rpcContext, rpc.NewServer(rpcContext), nil, stopper, metric.NewRegistry())
	slice := []byte("b")
	if err := g.AddInfo("s", slice, time.Hour); err != nil {
		t.Fatal(err)
	}
	if val, err := g.GetInfo("s"); !bytes.Equal(val, slice) || err != nil {
		t.Errorf("error fetching string: %v", err)
	}
	if _, err := g.GetInfo("s2"); err == nil {
		t.Errorf("expected error fetching nonexistent key \"s2\"")
	}
}
示例#16
0
// TestGossipOverwriteNode verifies that if a new node is added with the same
// address as an old node, that old node is removed from the cluster.
func TestGossipOverwriteNode(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()
	rpcContext := newInsecureRPCContext(stopper)
	g := NewTest(1, rpcContext, rpc.NewServer(rpcContext), nil, stopper, metric.NewRegistry())
	node1 := &roachpb.NodeDescriptor{NodeID: 1, Address: util.MakeUnresolvedAddr("tcp", "1.1.1.1:1")}
	node2 := &roachpb.NodeDescriptor{NodeID: 2, Address: util.MakeUnresolvedAddr("tcp", "2.2.2.2:2")}
	if err := g.SetNodeDescriptor(node1); err != nil {
		t.Fatal(err)
	}
	if err := g.SetNodeDescriptor(node2); err != nil {
		t.Fatal(err)
	}
	if val, err := g.GetNodeDescriptor(node1.NodeID); err != nil {
		t.Error(err)
	} else if val.NodeID != node1.NodeID {
		t.Errorf("expected node %d, got %+v", node1.NodeID, val)
	}
	if val, err := g.GetNodeDescriptor(node2.NodeID); err != nil {
		t.Error(err)
	} else if val.NodeID != node2.NodeID {
		t.Errorf("expected node %d, got %+v", node2.NodeID, val)
	}

	// Give node3 the same address as node1, which should cause node1 to be
	// removed from the cluster.
	node3 := &roachpb.NodeDescriptor{NodeID: 3, Address: node1.Address}
	if err := g.SetNodeDescriptor(node3); err != nil {
		t.Fatal(err)
	}
	if val, err := g.GetNodeDescriptor(node3.NodeID); err != nil {
		t.Error(err)
	} else if val.NodeID != node3.NodeID {
		t.Errorf("expected node %d, got %+v", node3.NodeID, val)
	}

	// Quiesce the stopper now to ensure that the update has propagated before
	// checking whether node 1 has been removed from the infoStore.
	stopper.Quiesce()
	expectedErr := "unable to look up descriptor for node"
	if val, err := g.GetNodeDescriptor(node1.NodeID); !testutils.IsError(err, expectedErr) {
		t.Errorf("expected error %q fetching node %d; got error %v and node %+v",
			expectedErr, node1.NodeID, err, val)
	}
}
示例#17
0
// CreateNode creates a simulation node and starts an RPC server for it.
func (n *Network) CreateNode() (*Node, error) {
	server := rpc.NewServer(n.rpcContext)
	ln, err := net.Listen(util.TestAddr.Network(), util.TestAddr.String())
	if err != nil {
		return nil, err
	}
	node := &Node{Server: server, Listener: ln, Registry: metric.NewRegistry()}
	node.Gossip = gossip.NewTest(0, n.rpcContext, server, nil, n.Stopper, node.Registry)
	n.Stopper.RunWorker(func() {
		<-n.Stopper.ShouldQuiesce()
		netutil.FatalIfUnexpected(ln.Close())
		<-n.Stopper.ShouldStop()
		server.Stop()
		node.Gossip.EnableSimulationCycler(false)
	})
	n.Nodes = append(n.Nodes, node)
	return node, nil
}
示例#18
0
// createTestStorePool creates a stopper, gossip and storePool for use in
// tests. Stopper must be stopped by the caller.
func createTestStorePool(
	timeUntilStoreDead time.Duration,
) (*stop.Stopper, *gossip.Gossip, *hlc.ManualClock, *StorePool) {
	stopper := stop.NewStopper()
	mc := hlc.NewManualClock(0)
	clock := hlc.NewClock(mc.UnixNano)
	rpcContext := rpc.NewContext(log.AmbientContext{}, &base.Config{Insecure: true}, clock, stopper)
	server := rpc.NewServer(rpcContext) // never started
	g := gossip.NewTest(1, rpcContext, server, nil, stopper, metric.NewRegistry())
	storePool := NewStorePool(
		log.AmbientContext{},
		g,
		clock,
		rpcContext,
		timeUntilStoreDead,
		stopper,
	)
	return stopper, g, mc, storePool
}
示例#19
0
// TestClientDisconnectLoopback verifies that the gossip server
// will drop an outgoing client connection that is already an
// inbound client connection of another node.
func TestClientDisconnectLoopback(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()
	local := startGossip(1, stopper, t, metric.NewRegistry())
	// startClient requires locks are held, so acquire here.
	local.mu.Lock()
	lAddr := local.mu.is.NodeAddr
	local.startClient(&lAddr, local.NodeID.Get())
	local.mu.Unlock()
	local.manage()
	util.SucceedsSoon(t, func() error {
		ok := local.findClient(func(c *client) bool { return c.addr.String() == lAddr.String() }) != nil
		if !ok && verifyServerMaps(local, 0) {
			return nil
		}
		return errors.New("local client still connected to itself")
	})
}
示例#20
0
// createTestStorePool creates a stopper, gossip and storePool for use in
// tests. Stopper must be stopped by the caller.
func createTestStorePool(
	timeUntilStoreDead time.Duration, deterministic bool, defaultNodeLiveness bool,
) (*stop.Stopper, *gossip.Gossip, *hlc.ManualClock, *StorePool, *mockNodeLiveness) {
	stopper := stop.NewStopper()
	mc := hlc.NewManualClock(123)
	clock := hlc.NewClock(mc.UnixNano, time.Nanosecond)
	rpcContext := rpc.NewContext(log.AmbientContext{}, &base.Config{Insecure: true}, clock, stopper)
	server := rpc.NewServer(rpcContext) // never started
	g := gossip.NewTest(1, rpcContext, server, nil, stopper, metric.NewRegistry())
	mnl := newMockNodeLiveness(defaultNodeLiveness)
	storePool := NewStorePool(
		log.AmbientContext{},
		g,
		clock,
		mnl.nodeLivenessFunc,
		timeUntilStoreDead,
		deterministic,
	)
	return stopper, g, mc, storePool, mnl
}
示例#21
0
func TestGossipGetNextBootstrapAddress(t *testing.T) {
	defer leaktest.AfterTest(t)()
	stopper := stop.NewStopper()
	defer stopper.Stop()

	resolverSpecs := []string{
		"127.0.0.1:9000",
		"127.0.0.1:9001",
		"localhost:9004",
	}

	resolvers := []resolver.Resolver{}
	for _, rs := range resolverSpecs {
		resolver, err := resolver.NewResolver(rs)
		if err == nil {
			resolvers = append(resolvers, resolver)
		}
	}
	if len(resolvers) != 3 {
		t.Errorf("expected 3 resolvers; got %d", len(resolvers))
	}
	server := rpc.NewServer(
		rpc.NewContext(log.AmbientContext{}, &base.Config{Insecure: true}, nil, stopper),
	)
	g := NewTest(0, nil, server, resolvers, stop.NewStopper(), metric.NewRegistry())

	// Using specified resolvers, fetch bootstrap addresses 3 times
	// and verify the results match expected addresses.
	expAddresses := []string{
		"127.0.0.1:9000",
		"127.0.0.1:9001",
		"localhost:9004",
	}
	for i := 0; i < len(expAddresses); i++ {
		if addr := g.getNextBootstrapAddress(); addr == nil {
			t.Errorf("%d: unexpected nil addr when expecting %s", i, expAddresses[i])
		} else if addrStr := addr.String(); addrStr != expAddresses[i] {
			t.Errorf("%d: expected addr %s; got %s", i, expAddresses[i], addrStr)
		}
	}
}
示例#22
0
// createCluster generates a new cluster using the provided stopper and the
// number of nodes supplied. Each node will have one store to start.
func createCluster(
	stopper *stop.Stopper,
	nodeCount int,
	epochWriter, actionWriter io.Writer,
	script Script,
	rand *rand.Rand,
) *Cluster {
	clock := hlc.NewClock(hlc.UnixNano, time.Nanosecond)
	rpcContext := rpc.NewContext(log.AmbientContext{}, &base.Config{Insecure: true}, clock, stopper)
	server := rpc.NewServer(rpcContext)
	// We set the node ID to MaxInt32 for the cluster Gossip instance to prevent
	// conflicts with real node IDs.
	g := gossip.NewTest(math.MaxInt32, rpcContext, server, nil, stopper, metric.NewRegistry())
	// Set the store pool to deterministic so that a run with the exact same
	// input will always produce the same output.
	storePool := storage.NewStorePool(
		log.AmbientContext{},
		g,
		clock,
		rpcContext,
		storage.TestTimeUntilStoreDeadOff,
		stopper,
		/* deterministic */ true,
	)
	c := &Cluster{
		stopper:   stopper,
		clock:     clock,
		rpc:       rpcContext,
		gossip:    g,
		storePool: storePool,
		allocator: storage.MakeAllocator(storePool, storage.AllocatorOptions{
			AllowRebalance: true,
		}),
		storeGossiper:   gossiputil.NewStoreGossiper(g),
		nodes:           make(map[roachpb.NodeID]*Node),
		stores:          make(map[roachpb.StoreID]*Store),
		ranges:          make(map[roachpb.RangeID]*Range),
		rangeIDsByStore: make(map[roachpb.StoreID]roachpb.RangeIDSlice),
		rand:            rand,
		epochWriter:     tabwriter.NewWriter(epochWriter, 8, 1, 2, ' ', 0),
		actionWriter:    tabwriter.NewWriter(actionWriter, 8, 1, 2, ' ', 0),
		script:          script,
		epoch:           -1,
	}

	// Add the nodes.
	for i := 0; i < nodeCount; i++ {
		c.addNewNodeWithStore()
	}

	// Add a single range and add to this first node's first store.
	firstRange := c.addRange()
	firstRange.addReplica(c.stores[0])

	c.calculateRangeIDsByStore()

	// Output the first epoch header.
	c.epoch = 0
	c.OutputEpochHeader()
	c.OutputEpoch()
	c.flush()

	return c
}
示例#23
0
// NewServer creates a Server from a server.Context.
func NewServer(cfg Config, stopper *stop.Stopper) (*Server, error) {
	if _, err := net.ResolveTCPAddr("tcp", cfg.AdvertiseAddr); err != nil {
		return nil, errors.Errorf("unable to resolve RPC address %q: %v", cfg.AdvertiseAddr, err)
	}

	if cfg.AmbientCtx.Tracer == nil {
		cfg.AmbientCtx.Tracer = tracing.NewTracer()
	}

	// Try loading the TLS configs before anything else.
	if _, err := cfg.GetServerTLSConfig(); err != nil {
		return nil, err
	}
	if _, err := cfg.GetClientTLSConfig(); err != nil {
		return nil, err
	}

	s := &Server{
		mux:     http.NewServeMux(),
		clock:   hlc.NewClock(hlc.UnixNano, cfg.MaxOffset),
		stopper: stopper,
		cfg:     cfg,
	}
	// Add a dynamic log tag value for the node ID.
	//
	// We need to pass an ambient context to the various server components, but we
	// won't know the node ID until we Start(). At that point it's too late to
	// change the ambient contexts in the components (various background processes
	// will have already started using them).
	//
	// NodeIDContainer allows us to add the log tag to the context now and update
	// the value asynchronously. It's not significantly more expensive than a
	// regular tag since it's just doing an (atomic) load when a log/trace message
	// is constructed. The node ID is set by the Store if this host was
	// bootstrapped; otherwise a new one is allocated in Node.
	s.cfg.AmbientCtx.AddLogTag("n", &s.nodeIDContainer)

	ctx := s.AnnotateCtx(context.Background())
	if s.cfg.Insecure {
		log.Warning(ctx, "running in insecure mode, this is strongly discouraged. See --insecure.")
	}

	s.rpcContext = rpc.NewContext(s.cfg.AmbientCtx, s.cfg.Config, s.clock, s.stopper)
	s.rpcContext.HeartbeatCB = func() {
		if err := s.rpcContext.RemoteClocks.VerifyClockOffset(); err != nil {
			log.Fatal(ctx, err)
		}
	}
	s.grpc = rpc.NewServer(s.rpcContext)

	s.registry = metric.NewRegistry()
	s.gossip = gossip.New(
		s.cfg.AmbientCtx,
		&s.nodeIDContainer,
		s.rpcContext,
		s.grpc,
		s.cfg.GossipBootstrapResolvers,
		s.stopper,
		s.registry,
	)
	s.storePool = storage.NewStorePool(
		s.cfg.AmbientCtx,
		s.gossip,
		s.clock,
		s.rpcContext,
		s.cfg.TimeUntilStoreDead,
		s.stopper,
		/* deterministic */ false,
	)

	// A custom RetryOptions is created which uses stopper.ShouldQuiesce() as
	// the Closer. This prevents infinite retry loops from occurring during
	// graceful server shutdown
	//
	// Such a loop loop occurs with the DistSender attempts a connection to the
	// local server during shutdown, and receives an internal server error (HTTP
	// Code 5xx). This is the correct error for a server to return when it is
	// shutting down, and is normally retryable in a cluster environment.
	// However, on a single-node setup (such as a test), retries will never
	// succeed because the only server has been shut down; thus, thus the
	// DistSender needs to know that it should not retry in this situation.
	retryOpts := base.DefaultRetryOptions()
	retryOpts.Closer = s.stopper.ShouldQuiesce()
	distSenderCfg := kv.DistSenderConfig{
		AmbientCtx:      s.cfg.AmbientCtx,
		Clock:           s.clock,
		RPCContext:      s.rpcContext,
		RPCRetryOptions: &retryOpts,
	}
	s.distSender = kv.NewDistSender(distSenderCfg, s.gossip)

	txnMetrics := kv.MakeTxnMetrics(s.cfg.MetricsSampleInterval)
	s.registry.AddMetricStruct(txnMetrics)
	s.txnCoordSender = kv.NewTxnCoordSender(
		s.cfg.AmbientCtx,
		s.distSender,
		s.clock,
		s.cfg.Linearizable,
		s.stopper,
		txnMetrics,
	)
	s.db = client.NewDB(s.txnCoordSender)

	// Use the range lease expiration and renewal durations as the node
	// liveness expiration and heartbeat interval.
	active, renewal := storage.RangeLeaseDurations(
		storage.RaftElectionTimeout(s.cfg.RaftTickInterval, s.cfg.RaftElectionTimeoutTicks))
	s.nodeLiveness = storage.NewNodeLiveness(
		s.cfg.AmbientCtx, s.clock, s.db, s.gossip, active, renewal,
	)
	s.registry.AddMetricStruct(s.nodeLiveness.Metrics())

	s.raftTransport = storage.NewRaftTransport(
		s.cfg.AmbientCtx, storage.GossipAddressResolver(s.gossip), s.grpc, s.rpcContext,
	)

	s.kvDB = kv.NewDBServer(s.cfg.Config, s.txnCoordSender, s.stopper)
	roachpb.RegisterExternalServer(s.grpc, s.kvDB)

	// Set up internal memory metrics for use by internal SQL executors.
	s.internalMemMetrics = sql.MakeMemMetrics("internal")
	s.registry.AddMetricStruct(s.internalMemMetrics)

	// Set up Lease Manager
	var lmKnobs sql.LeaseManagerTestingKnobs
	if cfg.TestingKnobs.SQLLeaseManager != nil {
		lmKnobs = *s.cfg.TestingKnobs.SQLLeaseManager.(*sql.LeaseManagerTestingKnobs)
	}
	s.leaseMgr = sql.NewLeaseManager(&s.nodeIDContainer, *s.db, s.clock, lmKnobs,
		s.stopper, &s.internalMemMetrics)
	s.leaseMgr.RefreshLeases(s.stopper, s.db, s.gossip)

	// Set up the DistSQL server
	distSQLCfg := distsql.ServerConfig{
		AmbientContext: s.cfg.AmbientCtx,
		DB:             s.db,
		RPCContext:     s.rpcContext,
		Stopper:        s.stopper,
	}
	s.distSQLServer = distsql.NewServer(distSQLCfg)
	distsql.RegisterDistSQLServer(s.grpc, s.distSQLServer)

	// Set up admin memory metrics for use by admin SQL executors.
	s.adminMemMetrics = sql.MakeMemMetrics("admin")
	s.registry.AddMetricStruct(s.adminMemMetrics)

	// Set up Executor
	execCfg := sql.ExecutorConfig{
		AmbientCtx:            s.cfg.AmbientCtx,
		NodeID:                &s.nodeIDContainer,
		DB:                    s.db,
		Gossip:                s.gossip,
		LeaseManager:          s.leaseMgr,
		Clock:                 s.clock,
		DistSQLSrv:            s.distSQLServer,
		MetricsSampleInterval: s.cfg.MetricsSampleInterval,
	}
	if s.cfg.TestingKnobs.SQLExecutor != nil {
		execCfg.TestingKnobs = s.cfg.TestingKnobs.SQLExecutor.(*sql.ExecutorTestingKnobs)
	} else {
		execCfg.TestingKnobs = &sql.ExecutorTestingKnobs{}
	}
	if s.cfg.TestingKnobs.SQLSchemaChanger != nil {
		execCfg.SchemaChangerTestingKnobs =
			s.cfg.TestingKnobs.SQLSchemaChanger.(*sql.SchemaChangerTestingKnobs)
	} else {
		execCfg.SchemaChangerTestingKnobs = &sql.SchemaChangerTestingKnobs{}
	}
	s.sqlExecutor = sql.NewExecutor(execCfg, s.stopper, &s.adminMemMetrics)
	s.registry.AddMetricStruct(s.sqlExecutor)

	s.pgServer = pgwire.MakeServer(
		s.cfg.AmbientCtx, s.cfg.Config, s.sqlExecutor, &s.internalMemMetrics, s.cfg.SQLMemoryPoolSize,
	)
	s.registry.AddMetricStruct(s.pgServer.Metrics())

	s.tsDB = ts.NewDB(s.db)
	s.tsServer = ts.MakeServer(s.cfg.AmbientCtx, s.tsDB, s.cfg.TimeSeriesServerConfig, s.stopper)

	// TODO(bdarnell): make StoreConfig configurable.
	storeCfg := storage.StoreConfig{
		AmbientCtx:                     s.cfg.AmbientCtx,
		Clock:                          s.clock,
		DB:                             s.db,
		Gossip:                         s.gossip,
		NodeLiveness:                   s.nodeLiveness,
		Transport:                      s.raftTransport,
		RaftTickInterval:               s.cfg.RaftTickInterval,
		ScanInterval:                   s.cfg.ScanInterval,
		ScanMaxIdleTime:                s.cfg.ScanMaxIdleTime,
		ConsistencyCheckInterval:       s.cfg.ConsistencyCheckInterval,
		ConsistencyCheckPanicOnFailure: s.cfg.ConsistencyCheckPanicOnFailure,
		MetricsSampleInterval:          s.cfg.MetricsSampleInterval,
		StorePool:                      s.storePool,
		SQLExecutor: sql.InternalExecutor{
			LeaseManager: s.leaseMgr,
		},
		LogRangeEvents: s.cfg.EventLogEnabled,
		AllocatorOptions: storage.AllocatorOptions{
			AllowRebalance: true,
		},
		RangeLeaseActiveDuration:  active,
		RangeLeaseRenewalDuration: renewal,
		TimeSeriesDataStore:       s.tsDB,
	}
	if s.cfg.TestingKnobs.Store != nil {
		storeCfg.TestingKnobs = *s.cfg.TestingKnobs.Store.(*storage.StoreTestingKnobs)
	}

	s.recorder = status.NewMetricsRecorder(s.clock)
	s.registry.AddMetricStruct(s.rpcContext.RemoteClocks.Metrics())

	s.runtime = status.MakeRuntimeStatSampler(s.clock)
	s.registry.AddMetricStruct(s.runtime)

	s.node = NewNode(storeCfg, s.recorder, s.registry, s.stopper, txnMetrics, sql.MakeEventLogger(s.leaseMgr))
	roachpb.RegisterInternalServer(s.grpc, s.node)
	storage.RegisterConsistencyServer(s.grpc, s.node.storesServer)
	storage.RegisterFreezeServer(s.grpc, s.node.storesServer)

	s.admin = newAdminServer(s)
	s.status = newStatusServer(
		s.cfg.AmbientCtx, s.db, s.gossip, s.recorder, s.rpcContext, s.node.stores,
	)
	for _, gw := range []grpcGatewayServer{s.admin, s.status, &s.tsServer} {
		gw.RegisterService(s.grpc)
	}

	return s, nil
}
示例#24
0
func TestGossipOrphanedStallDetection(t *testing.T) {
	defer leaktest.AfterTest(t)()

	stopper := stop.NewStopper()
	defer stopper.Stop()
	local := startGossip(1, stopper, t, metric.NewRegistry())
	local.SetStallInterval(5 * time.Millisecond)

	// Make sure we have the sentinel to ensure that its absence is not the
	// cause of stall detection.
	if err := local.AddInfo(KeySentinel, nil, time.Hour); err != nil {
		t.Fatal(err)
	}

	peerStopper := stop.NewStopper()
	peer := startGossip(2, peerStopper, t, metric.NewRegistry())

	peerNodeID := peer.NodeID.Get()
	peerAddr := peer.GetNodeAddr()
	peerAddrStr := peerAddr.String()

	local.startClient(peerAddr)

	util.SucceedsSoon(t, func() error {
		for _, peerID := range local.Outgoing() {
			if peerID == peerNodeID {
				return nil
			}
		}
		return errors.Errorf("node %d not yet connected", peerNodeID)
	})

	util.SucceedsSoon(t, func() error {
		for _, resolver := range local.GetResolvers() {
			if resolver.Addr() == peerAddrStr {
				return nil
			}
		}
		return errors.Errorf("node %d descriptor not yet available", peerNodeID)
	})

	local.bootstrap()
	local.manage()

	peerStopper.Stop()

	util.SucceedsSoon(t, func() error {
		for _, peerID := range local.Outgoing() {
			if peerID == peerNodeID {
				return errors.Errorf("node %d still connected", peerNodeID)
			}
		}
		return nil
	})

	peerStopper = stop.NewStopper()
	defer peerStopper.Stop()
	startGossipAtAddr(peerNodeID, peerAddr, peerStopper, t, metric.NewRegistry())

	util.SucceedsSoon(t, func() error {
		for _, peerID := range local.Outgoing() {
			if peerID == peerNodeID {
				return nil
			}
		}
		return errors.Errorf("node %d not yet connected", peerNodeID)
	})
}
示例#25
0
func newStoreMetrics(sampleInterval time.Duration) *StoreMetrics {
	storeRegistry := metric.NewRegistry()
	sm := &StoreMetrics{
		registry: storeRegistry,

		// Replica metrics.
		ReplicaCount:                  metric.NewCounter(metaReplicaCount),
		ReservedReplicaCount:          metric.NewCounter(metaReservedReplicaCount),
		RaftLeaderCount:               metric.NewGauge(metaRaftLeaderCount),
		RaftLeaderNotLeaseHolderCount: metric.NewGauge(metaRaftLeaderNotLeaseHolderCount),
		LeaseHolderCount:              metric.NewGauge(metaLeaseHolderCount),
		QuiescentCount:                metric.NewGauge(metaQuiescentCount),

		// Replica CommandQueue metrics.
		MaxCommandQueueSize:       metric.NewGauge(metaMaxCommandQueueSize),
		MaxCommandQueueWriteCount: metric.NewGauge(metaMaxCommandQueueWriteCount),
		MaxCommandQueueReadCount:  metric.NewGauge(metaMaxCommandQueueReadCount),
		MaxCommandQueueTreeSize:   metric.NewGauge(metaMaxCommandQueueTreeSize),
		MaxCommandQueueOverlaps:   metric.NewGauge(metaMaxCommandQueueOverlaps),
		CombinedCommandQueueSize:  metric.NewGauge(metaCombinedCommandQueueSize),
		CombinedCommandWriteCount: metric.NewGauge(metaCombinedCommandWriteCount),
		CombinedCommandReadCount:  metric.NewGauge(metaCombinedCommandReadCount),

		// Range metrics.
		RangeCount:                metric.NewGauge(metaRangeCount),
		UnavailableRangeCount:     metric.NewGauge(metaUnavailableRangeCount),
		UnderReplicatedRangeCount: metric.NewGauge(metaUnderReplicatedRangeCount),

		// Lease request metrics.
		LeaseRequestSuccessCount: metric.NewCounter(metaLeaseRequestSuccessCount),
		LeaseRequestErrorCount:   metric.NewCounter(metaLeaseRequestErrorCount),

		// Storage metrics.
		LiveBytes:       metric.NewGauge(metaLiveBytes),
		KeyBytes:        metric.NewGauge(metaKeyBytes),
		ValBytes:        metric.NewGauge(metaValBytes),
		IntentBytes:     metric.NewGauge(metaIntentBytes),
		LiveCount:       metric.NewGauge(metaLiveCount),
		KeyCount:        metric.NewGauge(metaKeyCount),
		ValCount:        metric.NewGauge(metaValCount),
		IntentCount:     metric.NewGauge(metaIntentCount),
		IntentAge:       metric.NewGauge(metaIntentAge),
		GcBytesAge:      metric.NewGauge(metaGcBytesAge),
		LastUpdateNanos: metric.NewGauge(metaLastUpdateNanos),
		Capacity:        metric.NewGauge(metaCapacity),
		Available:       metric.NewGauge(metaAvailable),
		Reserved:        metric.NewCounter(metaReserved),
		SysBytes:        metric.NewGauge(metaSysBytes),
		SysCount:        metric.NewGauge(metaSysCount),

		// RocksDB metrics.
		RdbBlockCacheHits:           metric.NewGauge(metaRdbBlockCacheHits),
		RdbBlockCacheMisses:         metric.NewGauge(metaRdbBlockCacheMisses),
		RdbBlockCacheUsage:          metric.NewGauge(metaRdbBlockCacheUsage),
		RdbBlockCachePinnedUsage:    metric.NewGauge(metaRdbBlockCachePinnedUsage),
		RdbBloomFilterPrefixChecked: metric.NewGauge(metaRdbBloomFilterPrefixChecked),
		RdbBloomFilterPrefixUseful:  metric.NewGauge(metaRdbBloomFilterPrefixUseful),
		RdbMemtableHits:             metric.NewGauge(metaRdbMemtableHits),
		RdbMemtableMisses:           metric.NewGauge(metaRdbMemtableMisses),
		RdbMemtableTotalSize:        metric.NewGauge(metaRdbMemtableTotalSize),
		RdbFlushes:                  metric.NewGauge(metaRdbFlushes),
		RdbCompactions:              metric.NewGauge(metaRdbCompactions),
		RdbTableReadersMemEstimate:  metric.NewGauge(metaRdbTableReadersMemEstimate),
		RdbReadAmplification:        metric.NewGauge(metaRdbReadAmplification),
		RdbNumSSTables:              metric.NewGauge(metaRdbNumSSTables),

		// Range event metrics.
		RangeSplits:                     metric.NewCounter(metaRangeSplits),
		RangeAdds:                       metric.NewCounter(metaRangeAdds),
		RangeRemoves:                    metric.NewCounter(metaRangeRemoves),
		RangeSnapshotsGenerated:         metric.NewCounter(metaRangeSnapshotsGenerated),
		RangeSnapshotsNormalApplied:     metric.NewCounter(metaRangeSnapshotsNormalApplied),
		RangeSnapshotsPreemptiveApplied: metric.NewCounter(metaRangeSnapshotsPreemptiveApplied),

		// Raft processing metrics.
		RaftTicks:                metric.NewCounter(metaRaftTicks),
		RaftWorkingDurationNanos: metric.NewCounter(metaRaftWorkingDurationNanos),
		RaftTickingDurationNanos: metric.NewCounter(metaRaftTickingDurationNanos),

		// Raft message metrics.
		RaftRcvdMsgProp:           metric.NewCounter(metaRaftRcvdProp),
		RaftRcvdMsgApp:            metric.NewCounter(metaRaftRcvdApp),
		RaftRcvdMsgAppResp:        metric.NewCounter(metaRaftRcvdAppResp),
		RaftRcvdMsgVote:           metric.NewCounter(metaRaftRcvdVote),
		RaftRcvdMsgVoteResp:       metric.NewCounter(metaRaftRcvdVoteResp),
		RaftRcvdMsgPreVote:        metric.NewCounter(metaRaftRcvdPreVote),
		RaftRcvdMsgPreVoteResp:    metric.NewCounter(metaRaftRcvdPreVoteResp),
		RaftRcvdMsgSnap:           metric.NewCounter(metaRaftRcvdSnap),
		RaftRcvdMsgHeartbeat:      metric.NewCounter(metaRaftRcvdHeartbeat),
		RaftRcvdMsgHeartbeatResp:  metric.NewCounter(metaRaftRcvdHeartbeatResp),
		RaftRcvdMsgTransferLeader: metric.NewCounter(metaRaftRcvdTransferLeader),
		RaftRcvdMsgTimeoutNow:     metric.NewCounter(metaRaftRcvdTimeoutNow),
		RaftRcvdMsgDropped:        metric.NewCounter(metaRaftRcvdDropped),
		raftRcvdMessages:          make(map[raftpb.MessageType]*metric.Counter, len(raftpb.MessageType_name)),

		RaftEnqueuedPending: metric.NewGauge(metaRaftEnqueuedPending),

		// This Gauge measures the number of heartbeats queued up just before
		// the queue is cleared, to avoid flapping wildly.
		RaftCoalescedHeartbeatsPending: metric.NewGauge(metaRaftCoalescedHeartbeatsPending),

		// Replica queue metrics.
		GCQueueSuccesses:                          metric.NewCounter(metaGCQueueSuccesses),
		GCQueueFailures:                           metric.NewCounter(metaGCQueueFailures),
		GCQueuePending:                            metric.NewGauge(metaGCQueuePending),
		GCQueueProcessingNanos:                    metric.NewCounter(metaGCQueueProcessingNanos),
		RaftLogQueueSuccesses:                     metric.NewCounter(metaRaftLogQueueSuccesses),
		RaftLogQueueFailures:                      metric.NewCounter(metaRaftLogQueueFailures),
		RaftLogQueuePending:                       metric.NewGauge(metaRaftLogQueuePending),
		RaftLogQueueProcessingNanos:               metric.NewCounter(metaRaftLogQueueProcessingNanos),
		ConsistencyQueueSuccesses:                 metric.NewCounter(metaConsistencyQueueSuccesses),
		ConsistencyQueueFailures:                  metric.NewCounter(metaConsistencyQueueFailures),
		ConsistencyQueuePending:                   metric.NewGauge(metaConsistencyQueuePending),
		ConsistencyQueueProcessingNanos:           metric.NewCounter(metaConsistencyQueueProcessingNanos),
		ReplicaGCQueueSuccesses:                   metric.NewCounter(metaReplicaGCQueueSuccesses),
		ReplicaGCQueueFailures:                    metric.NewCounter(metaReplicaGCQueueFailures),
		ReplicaGCQueuePending:                     metric.NewGauge(metaReplicaGCQueuePending),
		ReplicaGCQueueProcessingNanos:             metric.NewCounter(metaReplicaGCQueueProcessingNanos),
		ReplicateQueueSuccesses:                   metric.NewCounter(metaReplicateQueueSuccesses),
		ReplicateQueueFailures:                    metric.NewCounter(metaReplicateQueueFailures),
		ReplicateQueuePending:                     metric.NewGauge(metaReplicateQueuePending),
		ReplicateQueueProcessingNanos:             metric.NewCounter(metaReplicateQueueProcessingNanos),
		ReplicateQueuePurgatory:                   metric.NewGauge(metaReplicateQueuePurgatory),
		SplitQueueSuccesses:                       metric.NewCounter(metaSplitQueueSuccesses),
		SplitQueueFailures:                        metric.NewCounter(metaSplitQueueFailures),
		SplitQueuePending:                         metric.NewGauge(metaSplitQueuePending),
		SplitQueueProcessingNanos:                 metric.NewCounter(metaSplitQueueProcessingNanos),
		TimeSeriesMaintenanceQueueSuccesses:       metric.NewCounter(metaTimeSeriesMaintenanceQueueFailures),
		TimeSeriesMaintenanceQueueFailures:        metric.NewCounter(metaTimeSeriesMaintenanceQueueSuccesses),
		TimeSeriesMaintenanceQueuePending:         metric.NewGauge(metaTimeSeriesMaintenanceQueuePending),
		TimeSeriesMaintenanceQueueProcessingNanos: metric.NewCounter(metaTimeSeriesMaintenanceQueueProcessingNanos),

		// GCInfo cumulative totals.
		GCNumKeysAffected:            metric.NewCounter(metaGCNumKeysAffected),
		GCIntentsConsidered:          metric.NewCounter(metaGCIntentsConsidered),
		GCIntentTxns:                 metric.NewCounter(metaGCIntentTxns),
		GCTransactionSpanScanned:     metric.NewCounter(metaGCTransactionSpanScanned),
		GCTransactionSpanGCAborted:   metric.NewCounter(metaGCTransactionSpanGCAborted),
		GCTransactionSpanGCCommitted: metric.NewCounter(metaGCTransactionSpanGCCommitted),
		GCTransactionSpanGCPending:   metric.NewCounter(metaGCTransactionSpanGCPending),
		GCAbortSpanScanned:           metric.NewCounter(metaGCAbortSpanScanned),
		GCAbortSpanConsidered:        metric.NewCounter(metaGCAbortSpanConsidered),
		GCAbortSpanGCNum:             metric.NewCounter(metaGCAbortSpanGCNum),
		GCPushTxn:                    metric.NewCounter(metaGCPushTxn),
		GCResolveTotal:               metric.NewCounter(metaGCResolveTotal),
		GCResolveSuccess:             metric.NewCounter(metaGCResolveSuccess),

		// Mutex timing.
		//
		// TODO(tschottdorf): Histograms don't work very well as they were
		// inherently built in a windowed (i.e. events-discarding) way, which
		// is not at all the correct way. Discard at one-minute interval which
		// gives sane (though mathematically nonsensical) results when exposed
		// at the moment.
		MuReplicaNanos: metric.NewHistogram(
			metaMuReplicaNanos, sampleInterval,
			time.Second.Nanoseconds(), 1,
		),
		MuCommandQueueNanos: metric.NewHistogram(
			metaMuCommandQueueNanos, sampleInterval,
			time.Second.Nanoseconds(), 1,
		),
		MuRaftNanos: metric.NewHistogram(
			metaMuRaftNanos, sampleInterval,
			time.Second.Nanoseconds(), 1,
		),
		MuStoreNanos: metric.NewHistogram(
			metaMuStoreNanos, sampleInterval,
			time.Second.Nanoseconds(), 1,
		),
		MuSchedulerNanos: metric.NewHistogram(
			metaMuSchedulerNanos, time.Minute,
			time.Second.Nanoseconds(), 1,
		),
	}

	sm.raftRcvdMessages[raftpb.MsgProp] = sm.RaftRcvdMsgProp
	sm.raftRcvdMessages[raftpb.MsgApp] = sm.RaftRcvdMsgApp
	sm.raftRcvdMessages[raftpb.MsgAppResp] = sm.RaftRcvdMsgAppResp
	sm.raftRcvdMessages[raftpb.MsgVote] = sm.RaftRcvdMsgVote
	sm.raftRcvdMessages[raftpb.MsgVoteResp] = sm.RaftRcvdMsgVoteResp
	sm.raftRcvdMessages[raftpb.MsgPreVote] = sm.RaftRcvdMsgPreVote
	sm.raftRcvdMessages[raftpb.MsgPreVoteResp] = sm.RaftRcvdMsgPreVoteResp
	sm.raftRcvdMessages[raftpb.MsgSnap] = sm.RaftRcvdMsgSnap
	sm.raftRcvdMessages[raftpb.MsgHeartbeat] = sm.RaftRcvdMsgHeartbeat
	sm.raftRcvdMessages[raftpb.MsgHeartbeatResp] = sm.RaftRcvdMsgHeartbeatResp
	sm.raftRcvdMessages[raftpb.MsgTransferLeader] = sm.RaftRcvdMsgTransferLeader
	sm.raftRcvdMessages[raftpb.MsgTimeoutNow] = sm.RaftRcvdMsgTimeoutNow

	storeRegistry.AddMetricStruct(sm)

	return sm
}
示例#26
0
// TestGossipNoForwardSelf verifies that when a Gossip instance is full, it
// redirects clients elsewhere (in particular not to itself).
//
// NB: Stress testing this test really stresses the OS networking stack
// more than anything else. For example, on Linux it may quickly deplete
// the ephemeral port range (due to the TIME_WAIT state).
// On a box which only runs tests, this can be circumvented by running
//
//	sudo bash -c "echo 1 > /proc/sys/net/ipv4/tcp_tw_recycle"
//
// See https://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
// for details.
//
// On OSX, things similarly fall apart. See #7524 and #5218 for some discussion
// of this.
func TestGossipNoForwardSelf(t *testing.T) {
	defer leaktest.AfterTest(t)()

	stopper := stop.NewStopper()
	defer stopper.Stop()
	local := startGossip(1, stopper, t, metric.NewRegistry())

	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

	// Start one loopback client plus enough additional clients to fill the
	// incoming clients.
	peers := []*Gossip{local}
	local.server.mu.Lock()
	maxSize := local.server.mu.incoming.maxSize
	local.server.mu.Unlock()
	for i := 0; i < maxSize; i++ {
		peers = append(peers, startGossip(roachpb.NodeID(i+2), stopper, t, metric.NewRegistry()))
	}

	for _, peer := range peers {
		c := newClient(log.AmbientContext{}, local.GetNodeAddr(), makeMetrics())

		util.SucceedsSoon(t, func() error {
			conn, err := peer.rpcContext.GRPCDial(c.addr.String(), grpc.WithBlock())
			if err != nil {
				return err
			}

			stream, err := NewGossipClient(conn).Gossip(ctx)
			if err != nil {
				return err
			}

			if err := c.requestGossip(peer, stream); err != nil {
				return err
			}

			// Wait until the server responds, so we know we're connected.
			_, err = stream.Recv()
			return err
		})
	}

	numClients := len(peers) * 2
	disconnectedCh := make(chan *client)

	// Start a few overflow peers and assert that they don't get forwarded to us
	// again.
	for i := 0; i < numClients; i++ {
		local.server.mu.Lock()
		maxSize := local.server.mu.incoming.maxSize
		local.server.mu.Unlock()
		peer := startGossip(roachpb.NodeID(i+maxSize+2), stopper, t, metric.NewRegistry())

		for {
			localAddr := local.GetNodeAddr()
			c := newClient(log.AmbientContext{}, localAddr, makeMetrics())
			c.start(peer, disconnectedCh, peer.rpcContext, stopper, peer.rpcContext.NewBreaker())

			disconnectedClient := <-disconnectedCh
			if disconnectedClient != c {
				t.Fatalf("expected %p to be disconnected, got %p", c, disconnectedClient)
			} else if c.forwardAddr == nil {
				// Under high load, clients sometimes fail to connect for reasons
				// unrelated to the test, so we need to permit some.
				t.Logf("node #%d: got nil forwarding address", peer.NodeID.Get())
				continue
			} else if *c.forwardAddr == *localAddr {
				t.Errorf("node #%d: got local's forwarding address", peer.NodeID.Get())
			}
			break
		}
	}
}
示例#27
0
// TestMetricsRecorder verifies that the metrics recorder properly formats the
// statistics from various registries, both for Time Series and for Status
// Summaries.
func TestMetricsRecorder(t *testing.T) {
	defer leaktest.AfterTest(t)()

	// ========================================
	// Construct a series of fake descriptors for use in test.
	// ========================================
	nodeDesc := roachpb.NodeDescriptor{
		NodeID: roachpb.NodeID(1),
	}
	storeDesc1 := roachpb.StoreDescriptor{
		StoreID: roachpb.StoreID(1),
		Capacity: roachpb.StoreCapacity{
			Capacity:  100,
			Available: 50,
		},
	}
	storeDesc2 := roachpb.StoreDescriptor{
		StoreID: roachpb.StoreID(2),
		Capacity: roachpb.StoreCapacity{
			Capacity:  200,
			Available: 75,
		},
	}

	// ========================================
	// Create registries and add them to the recorder (two node-level, two
	// store-level).
	// ========================================
	reg1 := metric.NewRegistry()
	store1 := fakeStore{
		storeID:  roachpb.StoreID(1),
		desc:     storeDesc1,
		registry: metric.NewRegistry(),
	}
	store2 := fakeStore{
		storeID:  roachpb.StoreID(2),
		desc:     storeDesc2,
		registry: metric.NewRegistry(),
	}
	manual := hlc.NewManualClock(100)
	recorder := NewMetricsRecorder(hlc.NewClock(manual.UnixNano, time.Nanosecond))
	recorder.AddStore(store1)
	recorder.AddStore(store2)
	recorder.AddNode(reg1, nodeDesc, 50)

	// Ensure the metric system's view of time does not advance during this test
	// as the test expects time to not advance too far which would age the actual
	// data (e.g. in histogram's) unexpectedly.
	defer metric.TestingSetNow(func() time.Time {
		return time.Unix(0, manual.UnixNano()).UTC()
	})()

	// ========================================
	// Generate Metrics Data & Expected Results
	// ========================================

	// Flatten the four registries into an array for ease of use.
	regList := []struct {
		reg    *metric.Registry
		prefix string
		source int64
		isNode bool
	}{
		{
			reg:    reg1,
			prefix: "one.",
			source: 1,
			isNode: true,
		},
		{
			reg:    reg1,
			prefix: "two.",
			source: 1,
			isNode: true,
		},
		{
			reg:    store1.registry,
			prefix: "",
			source: int64(store1.storeID),
			isNode: false,
		},
		{
			reg:    store2.registry,
			prefix: "",
			source: int64(store2.storeID),
			isNode: false,
		},
	}

	// Every registry will have a copy of the following metrics.
	metricNames := []struct {
		name string
		typ  string
		val  int64
	}{
		{"testGauge", "gauge", 20},
		{"testGaugeFloat64", "floatgauge", 20},
		{"testCounter", "counter", 5},
		{"testCounterWithRates", "counterwithrates", 2},
		{"testHistogram", "histogram", 10},
		{"testLatency", "latency", 10},

		// Stats needed for store summaries.
		{"ranges", "counter", 1},
		{"replicas.leaders", "gauge", 1},
		{"replicas.leaseholders", "gauge", 1},
		{"ranges", "gauge", 1},
		{"ranges.available", "gauge", 1},
	}

	// Add the metrics to each registry and set their values. At the same time,
	// generate expected time series results and status summary metric values.
	var expected []tspb.TimeSeriesData
	expectedNodeSummaryMetrics := make(map[string]float64)
	expectedStoreSummaryMetrics := make(map[string]float64)

	// addExpected generates expected data for a single metric data point.
	addExpected := func(prefix, name string, source, time, val int64, isNode bool) {
		// Generate time series data.
		tsPrefix := "cr.node."
		if !isNode {
			tsPrefix = "cr.store."
		}
		expect := tspb.TimeSeriesData{
			Name:   tsPrefix + prefix + name,
			Source: strconv.FormatInt(source, 10),
			Datapoints: []tspb.TimeSeriesDatapoint{
				{
					TimestampNanos: time,
					Value:          float64(val),
				},
			},
		}
		expected = append(expected, expect)

		// Generate status summary data.
		if isNode {
			expectedNodeSummaryMetrics[prefix+name] = float64(val)
		} else {
			// This can overwrite the previous value, but this is expected as
			// all stores in our tests have identical values; when comparing
			// status summaries, the same map is used as expected data for all
			// stores.
			expectedStoreSummaryMetrics[prefix+name] = float64(val)
		}
	}

	for _, reg := range regList {
		for _, data := range metricNames {
			switch data.typ {
			case "gauge":
				g := metric.NewGauge(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(g)
				g.Update(data.val)
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "floatgauge":
				g := metric.NewGaugeFloat64(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(g)
				g.Update(float64(data.val))
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "counter":
				c := metric.NewCounter(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(c)
				c.Inc((data.val))
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "counterwithrates":
				r := metric.NewCounterWithRates(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(r)
				r.Inc(data.val)
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "histogram":
				h := metric.NewHistogram(metric.Metadata{Name: reg.prefix + data.name}, time.Second, 1000, 2)
				reg.reg.AddMetric(h)
				h.RecordValue(data.val)
				for _, q := range recordHistogramQuantiles {
					addExpected(reg.prefix, data.name+q.suffix, reg.source, 100, data.val, reg.isNode)
				}
			case "latency":
				l := metric.NewLatency(metric.Metadata{Name: reg.prefix + data.name}, time.Hour)
				reg.reg.AddMetric(l)
				l.RecordValue(data.val)
				// Latency is simply three histograms (at different resolution
				// time scales).
				for _, q := range recordHistogramQuantiles {
					addExpected(reg.prefix, data.name+q.suffix, reg.source, 100, data.val, reg.isNode)
				}
			default:
				t.Fatalf("unexpected: %+v", data)
			}
		}
	}

	// ========================================
	// Verify time series data
	// ========================================
	actual := recorder.GetTimeSeriesData()

	// Actual comparison is simple: sort the resulting arrays by time and name,
	// and use reflect.DeepEqual.
	sort.Sort(byTimeAndName(actual))
	sort.Sort(byTimeAndName(expected))
	if a, e := actual, expected; !reflect.DeepEqual(a, e) {
		t.Errorf("recorder did not yield expected time series collection; diff:\n %v", pretty.Diff(e, a))
	}

	// ========================================
	// Verify node summary generation
	// ========================================
	expectedNodeSummary := &NodeStatus{
		Desc:      nodeDesc,
		BuildInfo: build.GetInfo(),
		StartedAt: 50,
		UpdatedAt: 100,
		Metrics:   expectedNodeSummaryMetrics,
		StoreStatuses: []StoreStatus{
			{
				Desc:    storeDesc1,
				Metrics: expectedStoreSummaryMetrics,
			},
			{
				Desc:    storeDesc2,
				Metrics: expectedStoreSummaryMetrics,
			},
		},
	}

	nodeSummary := recorder.GetStatusSummary()
	if nodeSummary == nil {
		t.Fatalf("recorder did not return nodeSummary")
	}

	sort.Sort(byStoreDescID(nodeSummary.StoreStatuses))
	if a, e := nodeSummary, expectedNodeSummary; !reflect.DeepEqual(a, e) {
		t.Errorf("recorder did not produce expected NodeSummary; diff:\n %v", pretty.Diff(e, a))
	}
}